
Gisselquist
Technology, LLC

4. Accessing

On-Chip Memory

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

2 / 81

Objective: Building a bus access to on-chip memory

˝ On-chip memory is almost as easy as register access

Work in Progress

Ź Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

3 / 81

This lesson is currently a work in progress.

It will remain so until . . .

˝ I’ve built the design myself

Project

Lesson Overview

Ź Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

4 / 81

Waveform Generation

Lesson Overview

Project

Ź
Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

5 / 81

Let’s build a project to output a waveform

˝ Initially, let’s make one or more LEDs blink
˝ Using a custom pattern read from memory

– We’ll write a special blinking sequence to memory
– Then read the blink pattern from memory

˝ At a programmable and controllable rate

– A second/separate module will control frequency
– Will also control: start, pause, repeat, and reset

Waveform Generation

Lesson Overview

Project

Ź
Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

6 / 81

Let’s build a project to output a waveform

˝ Initially, let’s make one or more LEDs blink
˝ Using a custom pattern read from memory
˝ At a programmable and controllable rate
˝ We’ll then move to an audio waveform generator

– If you have an audio device, you can play sound here.

˝ Bonus: (for those so inclined)

– You can also make any FPGA into an impromptu FM
transmitter

– Even without audio, therefore, you should be able to
make an audio waveform using unintentional
electromagnetically produced interference on an I/O pin.

Sound like a plan? Let’s go!

Project Structure

Lesson Overview

Project

Waveform
Generation

Ź
Project
Structure

Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

7 / 81

The more complex a design gets, the more it helps to draw it out.

We’ll need two bus interfaces

˝ One for waveform “memory”
˝ The other for output control

Control Requirements

Lesson Overview

Project

Waveform
Generation

Project Structure

Ź
Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

8 / 81

We’ll control our design with a couple of knobs:
012345678910111213141516171819202122232425262728293031

Unused WRP

Read address

Frequency (address step)

Unused

1. Playback control
2. Read address
3. Playback speed or frequency
4. That leaves one unused register

Control Requirements

Lesson Overview

Project

Waveform
Generation

Project Structure

Ź
Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

9 / 81

We’ll control our design with a couple of knobs:
012345678910111213141516171819202122232425262728293031

Unused WRP

1. Playback control

˝ One bit, P, controls playback (1) or pause (0)
˝ Writing to another bit, R, resets the address
˝ A third bit, W, controls whether we wrap from the end of

memory or stop

Control Requirements

Lesson Overview

Project

Waveform
Generation

Project Structure

Ź
Control
Requirements

Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

10 / 81

We’ll control our design with a couple of knobs:

1. Playback control
2. Read address

˝ Reads tell you where we are at in the cycle
˝ Writes set up the next address

3. Playback speed

˝ This will be our address increment

4. That leaves one register left

˝ I’ll leave it unused. You can do with it as you wish.

We’ll come back to this in a bit.

˝ Let’s discuss the block RAM component first

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

11 / 81

Memory is actually really easy. You know most of this already.

˝ Declare the memory

parameter W = 32 , // Match the bus width
LGNA = 5 ; // Log o f the memory s i z e

reg [W´1:0] mem [0:(1<<LGNA) ´1] ;

But how shall two bus interfaces share the same memory?

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

12 / 81

Full Block RAMs can’t be passed directly from one module to
the next

The following code doesn’t work

input wire [W´1:0] mem [0:(1<<LGNA) ´1] ;

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

13 / 81

Full Block RAMs can’t be passed directly from one module to
the next

˝ We could create an interface for this memory for the control
core: Rd, Addr, Rdata, etc.

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

14 / 81

Full Block RAMs can’t be passed directly from one module to
the next

˝ We could create an interface for this memory for the control
core: Rd, Addr, Rdata, etc.

˝ Or we can place both cores in the same module

– The bus interfaces could be shared
– Or the two interfaces could be separate

Today, we’ll place both interfaces together in the same module

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

15 / 81

To handle two bus ports,

˝ I’ll prefix one with i_mem_∗ or o_mem_∗

– rather than i_wb_∗ or o_wb_∗

˝ The other with i_ctrl_∗ or o_ctrl_∗
˝ I’ll drop these prefixes in these slides, just because screen

space is tight

– You’ll see these full names in the example files

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

16 / 81

Let’s continue building our memory module

˝ We’ve already declared our memory
˝ Now we’ll handle memory writes

always @ (posedge i_clk)
i f (i_stb && i_we)
begin

i f (i_sel [3])
mem [i_addr] [3 1 : 2 4] <= i_data [3 1 : 2 4] ;

i f (i_sel [2])
mem [i_addr] [2 3 : 1 6] <= i_data [2 3 : 1 6] ;

i f (i_sel [1])
mem [i_addr] [1 5 : 8] <= i_data [1 5 : 8] ;

i f (i_sel [0])
mem [i_addr] [7 : 0] <= i_data [7 : 0] ;

end

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

17 / 81

Let’s continue building our memory module

˝ We’ve already declared our memory
˝ Now we’ll handle memory writes
˝ Then memory reads

always @ (posedge i_clk)
o_data <= mem [i_addr] ;

˝ Wishbone signaling

always @ (∗)
o_stall = 1 ’b0 ;

i n i t i a l o_ack <= 0 ;
always @ (posedge i_clk)

o_ack <= i_stb ;

Memory Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Ź Memory Core

Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

18 / 81

Memory is actually really easy. You know most of this already.

˝ Declare the memory
˝ Handle memory writes
˝ Handle memory reads
˝ Handle Wishbone signaling

We’ll use a different formal technique to verify this

˝ We’ll come back to that in a moment

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

19 / 81

Now let’s build our control core

˝ It’ll just read from an incrementing address through memory

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

20 / 81

Now let’s build our control core

˝ We’ll need a memory address

// Note tha t at 32´b i t s , t h i s a dd r e s s has many
// b i t s than the LGNA b i t s our memory r e q u i r e s
reg [3 1 : 0] memaddr ;

˝ From this we’ll read from memory

always @ (posedge i_clk)
memword <= mem [memaddr [31:32 ´LGNA]] ;

What if we don’t want to read 32-bits at a time?

˝ Sorry, all memory reads are the full width
˝ To read 8-bits at a time, we’ll need to select our 8-bits from

among these 32-bits

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

21 / 81

Now let’s build our control core

˝ We’ll need a memory address

– The bottom 2-bits will tell us which octet of our word

˝ We’ll read with 2-bits less in the address

always @ (posedge i_clk)
memword <= mem [memaddr [31:30 ´LGNA]] ;

˝ We also need to record the sub address bits

always @ (posedge i_clk)
subaddr <= memaddr [29´LGNA :32´LGNA] ;

˝ On the next cycle, we can get the 8-bits we want

always @ (posedge i_clk)
o_sample <= memword >> (subaddr ∗ 8) ;

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

22 / 81

Now let’s build our control core.

˝ Bus writes

1. First the control address

always @ (posedge i_clk)
i f (i_stb && i_we&& i_addr == 0 && i_sel [0])
begin

playing <= i_data [0] ;
reset_addr <= i_data [1] ;
wrap <= i_data [2] ;

end e l s e

// C l e a r the r e s e t r e q u e s t on
// the next c l o c k
reset_addr <= 1 ’b0 ;

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

23 / 81

Now let’s build our control core.

˝ Bus writes

1. First the control address
2. Then the memory address

– Here we’ll need to do a couple of things
– First, read any new value from the bus

always @ (posedge i_clk)
i f (i_stb && i_we && i_addr == 1)

// Q: How would you hand l e i s e l h e r e ?
memaddr <= i_data ;

e l s e // . . .

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

24 / 81

Now let’s build our control core.

˝ Bus writes

1. First the control address
2. Then the memory address

– Here we’ll need to do a couple of things
– First, read any new value from the bus
– Reset our address if requested

// . . .
e l s e i f (reset_addr)

memaddr <= 0 ;
e l s e // . . .

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

25 / 81

Now let’s build our control core.

˝ Bus writes

1. First the control address
2. Then the memory address

– . . . Update the address if we are currently “playing”

// . . .
e l s e i f (playing)

// Step through memory
memaddr <= memaddr + speed ;

Note that I haven’t implemented the play only once feature

˝ I’ll leave that control bit to you
˝ You’ll want to reset memaddr and playing on any overflow, if

you aren’t continuously playing

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

26 / 81

Now let’s build our control core.

˝ We’ll need a memory address
˝ From this we’ll read from memory
˝ Now let’s handle bus writes

1. First the control address
2. Then the memory address
3. Finally the speed (a.k.a. increment) register

always @ (posedge i_clk)
i f (i_stb && i_we && i_addr == 2)

// Q: How would you hand l e i s e l h e r e ?
speed <= i_data ;

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

27 / 81

Now let’s build our control core.

˝ We’ll need a memory address
˝ From this we’ll read from memory
˝ Now let’s handle bus reads

wire [3 1 : 0] w_control_data ;

ass ign w_control_data = { 29 ’h0 ,
wrap , 1 ’b0 , playing } ;

always @ (posedge i_clk)
case (i_addr)
0 : o_data <= w_control_data ;
1 : o_data <= memaddr ;
2 : o_data <= speed ;
2 : o_data <= 0 ;
endcase

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

28 / 81

Now let’s build our control core.

˝ We’ll need a memory address
˝ From this we’ll read from memory
˝ Now let’s handle bus reads

wire [3 1 : 0] w_control_data ;

ass ign w_control_data = { 29 ’h0 ,
wrap , 1 ’b0 , playing } ;

This is a common form I use often

˝ Declare a bus-wide register, here it is w_control_data
˝ Assign it as appropriate, then return it on any read
˝ Simulation tools will then leave the register in the trace so

you can examine it as desired

Control Core

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Ź Control Core

Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

29 / 81

Now let’s build our control core.

˝ We’ll need a memory address
˝ From this we’ll read from memory
˝ Now let’s handle bus reads, and
˝ The last of the bus odds and ends

always @ (∗)
o_stall = 1 ’b0 ;

i n i t i a l o_ack = 1 ’b0 ;
always @ (posedge i_clk)

o_ack <= i_stb ;

Simple enough?

Resets?

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Control Core

Ź Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

30 / 81

We haven’t included resets into our design

˝ Do we need them?

Your thoughts?

Resets?

Lesson Overview

Project

Waveform
Generation

Project Structure

Control
Requirements

Memory Core

Control Core

Ź Resets?

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

31 / 81

Do we need a reset? Here are my thoughts:

˝ FPGAs support initial statements

– ASICs do not support initial statements
– FPGA support is (usually) pretty good

˝ LED or audio glitches will never be noticed
˝ We will still need to reset anything bus related

– This is primarily the o_ack register

i n i t i a l o_ack = 1 ’b0 ;
always @ (posedge i_clk)
i f (i_reset)

o_ack <= 1 ’b0 ;
e l s e

o_ack <= i_stb ;

– We could also reset playing and memaddr

Formal Verification

Lesson Overview

Project

Ź
Formal
Verification

Property Files

Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

32 / 81

Property Files

Lesson Overview

Project

Formal Verification

Ź Property Files

Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

33 / 81

Verifying bus components always starts with a bus property file

˝ If you are struggling to know where to start, this is it

– You can do a lot more, but this is often a good first start

˝ Here’s my Wishbone slave property file

– You should also find a copy in the exercise files
– I have other bus property files as well

˝ Any core that passes this property check will obey the bus
protocol

– Core’s that don’t, might hang your design
– Hung designs are hard to debug, and can lead to endless

frustration

Don’t get stuck: always start with the property file for your bus

https://github.com/ZipCPU/wb2axip/blob/master/bench/formal/fwb_slave.v
https://github.com/ZipCPU/wb2axip/tree/master/bench/formal

Property Files

Lesson Overview

Project

Formal Verification

Ź Property Files

Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

34 / 81

Checking the memory bus interface

˝ All we need to adjust is the address width of the checker

fwb_slave #(
// S e l e c t the add r e s s width on
// i n s t a n t i a t i o n
. AW (LGNA´2) ,
. F_LGDEPTH (F_LGDEPTH) ,
. F_MAX_STALL (1) ,
. F_MAX_ACK_DELAY (2))

fmem (i_clk , i_reset ,
i_mem_cyc , i_mem_stb , i_mem_we ,

i_mem_addr , i_mem_data , i_mem_sel ,
o_mem_ack , o_mem_stall , o_mem_data , 1 ’b0 ,
fmem_nreqs , fmem_nacks , fmem_outstanding) ;

Don’t forget to check both bus interfaces!

Property Files

Lesson Overview

Project

Formal Verification

Ź Property Files

Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

35 / 81

Bus property files only check bus properties, like . . .

˝ One and only one acknowledgment per request
˝ Stalled requests actually stall, etc.

The don’t check whether or not the core . . .

˝ Does the “right thing” on any writes
˝ Returns the “right data” on any reads
˝ Does the “right thing” in the rest of the logic

That leaves us with some other things to check

Verifying memory

Lesson Overview

Project

Formal Verification

Property Files

Ź Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

36 / 81

Verifying memory requires a different formal verification approach

˝ We discussed this in the beginner’s tutorial

1. Pick an arbitrary address

(∗ anyconst ∗) reg [LGNA ´3:0] f_addr ;

2. And a value for that address

reg [LGNA ´3:0] f_data ;

i n i t i a l assume (f_data == mem [f_addr]) ;

https://zipcpu.com/tutorial

Verifying memory

Lesson Overview

Project

Formal Verification

Property Files

Ź Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

37 / 81

Verifying memory requires a different formal verification approach

1. Pick an arbitrary address
2. And a value for that address
3. Update that value on any bus write

always @ (posedge i_clk)
i f (i_stb && i_we && i_addr == f_addr)

f_data <= i_data ;

4. Assert that our sampled value matches actual memory

always @ (posedge i_clk)
as se r t (f_data == mem [f_addr]) ;

Verifying memory

Lesson Overview

Project

Formal Verification

Property Files

Ź Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

38 / 81

Verifying memory requires a different formal verification approach

1. Pick an arbitrary address
2. And a value for that address
3. Update that value on any bus write
4. Assert that our sampled value matches actual memory
5. Assert that bus reads actually return the right answer

always @ (posedge i_clk)
i f (f_past_valid && ! $past (i_reset)

&& $past (i_wb_stb && i_addr == f_addr))
begin

as se r t (o_data == f_data) ;
as se r t (o_ack) ;

end

Verifying memory

Lesson Overview

Project

Formal Verification

Property Files

Ź Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

39 / 81

Verifying memory requires a different formal verification approach

1. Pick an arbitrary address
2. And a value for that address
3. Update that value on any bus write
4. Assert that our sampled value matches actual memory
5. Assert that bus reads actually return the right answer

You’ll need to adjust the write slightly to handle write strobes

˝ This should be straightforward

Verifying the Control Port

Lesson Overview

Project

Formal Verification

Property Files

Memory

Ź Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

40 / 81

You should be able to come up with some properties to verify
the control port

˝ Start with the bus property file, then . . .
˝ Verify that if ever wrap is false, then memaddr doesn’t wrap

without stopping
˝ Pick an address. Verify the output sample is correct if that

address is ever selected

– You’ll need to follow the address through our pipeline
– From memory read to final output sample

˝ Verify that the memory increments at speed units per clock

– This is trickier than it sounds–watch out for overflow!

Measuring Throughput

Lesson Overview

Project

Formal Verification

Property Files

Memory

Control

Ź Throughput

SymbiYosys script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

41 / 81

Measuring bus throughput is really easy using SymbiYosys

˝ We can use cover() for this purpose
˝ We just need to cover() some number of returns

– Let’s generate a trace showing four returns

always @ (posedge i_clk)
i f (i_reset)

cvr_returns <= 0 ;
e l s e i f (o_ack)

cvr_returns <= cvr_returns + 1 ;

always @ (∗)
cover (cvr_returns == 4) ;

Let’s go ahead and try this.

SymbiYosys script

Lesson Overview

Project

Formal Verification

Property Files

Memory

Control

Throughput

Ź
SymbiYosys
script

SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

42 / 81

Don’t forget, to use cover() you’ll want to use tasks

˝ Let’s create tasks prf and cvr

˝ prf will run a normal proof
˝ cvr will run a cover check

This should look just like we did it in the beginner’s tutorial

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

Rest c o n t i n u e s as b e f o r e

SymbiYosys and Make

Lesson Overview

Project

Formal Verification

Property Files

Memory

Control

Throughput

SymbiYosys script

Ź
SymbiYosys and
Make

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

43 / 81

I really like using make with my SymbiYosys runs

˝ The PASS file makes a good make target

RTL := ../../ r t l

DEPS:= $(RTL)/wavegen.v fwb s l ave .v

wavegen prf /PASS: $(DEPS) wavegen. sby

sby - f wavegen. sby p r f

wavegen cvr /PASS: $(DEPS) wavegen. sby

sby - f wavegen. sby cv r

Now if ever our file ever changes, make will catch it

˝ make can automatically rebuild proofs across a project
˝ Can quickly let you know if something changed significantly
˝ Only ever as good as the properties you write

https://www.gnu.org/software/make
https://www.gnu.org/software/make
https://www.gnu.org/software/make
https://www.gnu.org/software/make

Do not pass Go

Lesson Overview

Project

Formal Verification

Property Files

Memory

Control

Throughput

SymbiYosys script

SymbiYosys and
Make

Ź Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

44 / 81

The next step is integrating this core into a bigger design

˝ Do not proceed to integration until you know your core works!

Take whatever time you need get it your core to pass

˝ This applies especially to your bus interfaces
˝ Do what you can with the rest
˝ If you miss a bug later, then adjust your properties to catch it

next time and come back here and re-do this step

Debugging only gets harder from here on out

AutoFPGA

Lesson Overview

Project

Formal Verification

Ź AutoFPGA

Bus connection

Memory Config

Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

45 / 81

Bus connection

Lesson Overview

Project

Formal Verification

AutoFPGA

Ź Bus connection

Memory Config

Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

46 / 81

Now that we have a core to play with, let’s wire it up!

˝ As before, we can use AutoFPGA to connect this to the bus
˝ Only really one different/unique thing about this core

– It has two bus interfaces

˝ We’ll handle this by telling AutoFPGA we have two cores

– Using only one configuration file
– We’ll then reference the bus connections of the one from

within the other

Memory Config

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Ź Memory Config

Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

47 / 81

We’ll start with the memory configuration
@PREFIX=wavegen

@SLAVE.BUS=wb Connect to bus named wb
@SLAVE.TYPE=DOUBLE Respond in one cycle
@MAIN.PORTLIST= Output LEDs

o_led

@MAIN.IODECL= Declare our output

output wire [7 : 0] o_led ;

Memory Config

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Ź Memory Config

Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

48 / 81

We’ll want to make the memory size adjustable

˝ AutoFPGA supports tags with integer values
˝ These start with @$ @$LGNADDR=4 2

4 or 16 words
˝ We can then use this value to calculate the number of bus

words this core supports
@$NADDR=(1<<@$(LGNADDR)) Num bus words

– Note that the initial @$ is critical
– It keeps this value from being interpreted as a string

Main insert

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Ź Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

49 / 81

The next step is to insert this core into our main design
MAIN.INSERT= This will be copied into main.v

wavegen #(.LGNA (@$ (LGNADDR)+2))
@$ (PREFIX)i (i_clk , i_reset ,

//
// The po r t l i s t f o r the memory po r t
@$ (SLAVE . PORTLIST) ,
//
// Grab the po r t l i s t f o r the c o n t r o l po r t
@$ (wavectrl . SLAVE . PORTLIST) ,
//
// Our 8´b i t output , headed to the LEDs
o_led) ;

Let’s step through this

Main insert

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Ź Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

50 / 81

The next step is to insert this core into our main design

˝ The core has an LGNA parameter determining memory size
˝ The bus also needs to know this memory size
˝ Software accessing this core also needs to know this memory

size
˝ We defined this size using @$LGNADDR above
˝ We can now reference it as @$(LGNADDR)
˝ AutoFPGA will substitute this with our calculated value

wavegen #(.LGNA (@$ (LGNADDR)+2))
// . . .

Main insert

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Ź Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

51 / 81

The next step is to insert this core into our main design

˝ We need to give our core a name
˝ I often use @$(PREFIX)i for this
˝ In this case, that expands to wavegeni

˝ Software accessing this core also needs to know this memory
size

˝ We defined this size using @$LGNADDR above
˝ We can now reference it as @$(LGNADDR)
˝ AutoFPGA will substitute this with our calculated value

wavegen #(.LGNA (@$ (LGNADDR)+2))
@$ (PREFIX)i (i_clk , i_reset) ,

// . . .

Main insert

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Ź Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

52 / 81

The next step is to insert this core into our main design

˝ Connecting to a bus involves a lot of port connections
˝ AutoFPGA provides @$(SLAVE.PORTLIST) to make this

easier

– This automatically adjusts for the right address width
– It does require positional argument assignment
– Your code needs to match

˝ AutoFPGA also defines @$(SLAVE.ANSIPORTLIST) if you
want to use named ports instead

– These names can be parameterized to match your design
– All defined bus connections are still required

@$ (SLAVE . PORTLIST) ,

Main insert

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Ź Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

53 / 81

The next step is to insert this core into our main design

˝ What about our other bus connection?
˝ We’ll define the control interface with a @PREFIX of

wavectrl

˝ We can reference it from within this core’s set up

– Tags not defined in the current context are searched for in
the next context up

– That’s where we’ll find wavectrl.SLAVE.PORTLIST

@$ (wavectrl . SLAVE . PORTLIST) ,

The last piece, o_led are just the LED driving wires

o_led) ;

This all gets copied into main.v

Register Address

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Main insert

Ź Register Address

CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

54 / 81

We’ll also want to know the ultimate address of our core

˝ This is determined by AutoFPGA

– It’s used internally to configure the interconnect
– We also want this value in several output files

@REGS.N=1 One named address
@REGS.0=0 R WAVEFORM WAVEFORM Defines names in regdefs.*
@REGDEFS.H.INSERT= Put the length into regdefs.h

// Size of our waveform memory

#de f i n e WAVELEN (1<<@(LGNADDR))

CPU Header

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Main insert

Register Address

Ź CPU Header

Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

55 / 81

We’ll also want to know the ultimate address of our core

˝ We might want also to know this address within a soft-core
CPU

˝ The following will be copied into a board.h file
@BDEF.OSVAL= Define our memory’s base address

s t a t i c v o l a t i l e uns igned * const @$(PREFIX)

= ((uns igned *)@$[0x%08x](REGBASE));

˝ @$REGBASE is the base address of this component
˝ The r0x%08xs notation just specifies how this address is to

be formatted: Eight hex digits following a 0x prefix
˝ It follows the C/C++ printf conventions

Simulation

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Main insert

Register Address

CPU Header

Ź Simulation

Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

56 / 81

Let’s create a simple simulation script to printf () any time our
output changes
@SIM.CLOCK=clk Define the relevant clock
@SIM.DEFNS= Define a local C++ variable

i n t m l a s t l e d ;

@SIM.INIT= Initialize it

m la s t l e d = 0;

Simulation

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Main insert

Register Address

CPU Header

Simulation

Ź Simulation

Control Registers

Running AutoFPGA

Simulation

Host Control

Hardware

57 / 81

Let’s create a simple simulation script to printf () any time our
output changes

˝ Now, what shall we do on every clock tick?
˝ That’s provided by the @SIM.TICK tag
˝ The field gets copied into our main tb.cpp file

@SIM.TICK= Do this on each clock tick

i f (m core -> o l ed != m la s t l e d) {

m la s t l e d = m core -> o l ed ;

p r i n t f ("LED output: %02\n",

m la s t l e d);

}

Control Registers

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Main insert

Register Address

CPU Header

Simulation

Simulation

Ź
Control
Registers

Running AutoFPGA

Simulation

Host Control

Hardware

58 / 81

We still need to define our control interface and registers

˝ For this, we’ll place a second @PREFIX tag in the config file
@PREFIX=wavectrl Define a second bus interface
@NADDR=4 With four registers
@SLAVE.BUS=wb Connecting to wb bus
@SLAVE.TYPE=DOUBLE Taking one clock
@REGS.N=3 Having three named registers

˝ Now, let’s define our three registers
REGS.0=0 R WAVECTRL WAVECTRL Control register
REGS.1=1 R WAVEADDR WAVEADDR Current address
REGS.2=2 R WAVEFREQ WAVEFREQ Step reg

Remember, we covered the REGS.# format in the last lesson

Running AutoFPGA

Lesson Overview

Project

Formal Verification

AutoFPGA

Bus connection

Memory Config

Main insert

Register Address

CPU Header

Simulation

Simulation

Control Registers

Ź
Running
AutoFPGA

Simulation

Host Control

Hardware

59 / 81

Now, when you run AutoFPGA, you’ll get . . .

˝ main.v containing bus connection logic, crossbar references,
etc.

˝ main tb.cpp containing your component’s simulation logic
˝ regdefs.h defining C++ names for your registers

– We chose to prefix all of these with R

– These are turned into #define statements, assigning the
associated name with its address

˝ regdefs.cpp defining a name to be used with wbregs

˝ board.h defining your registers

Simulation

Lesson Overview

Project

Formal Verification

AutoFPGA

Ź Simulation

Simulation

Test Sequence

Test Sequence

Sim Control

Caution!

Host Control

Hardware

60 / 81

Simulation

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Ź Simulation

Test Sequence

Test Sequence

Sim Control

Caution!

Host Control

Hardware

61 / 81

Always test your designs in simulation before hardware

˝ Most of the simulation files are already built for you
˝ You’ll still need to compile them
˝ Once done,

1. Run main tb in one window

– You can use -d to create a VCD trace as well

2. Use wbregs to interact with your design

– It should recognize the names WAVECTRL, WAVEADDR,
WAVEFREQ, and WAVEFORM

Test Sequence

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Simulation

Ź Test Sequence

Test Sequence

Sim Control

Caution!

Host Control

Hardware

62 / 81

Try creating a test sequence for your simulation

˝ We have 16 slots to play with
˝ How about blinking three times, . . .
˝ While scrolling an LED back and forth?
˝ Hint: You’ll need to look up the WAVEFORM address

Assuming the waveform address is 0x0400

wbregs 0x400 0x11 # Turn LED [0] on

wbregs 0x404 0x10 # LED [0] off

wbregs 0x408 0x21 # LED [0] on

wbregs 0x40c 0x20 # LED [0] off

wbregs 0x410 0x41 # LED [0] on

wbregs 0x414 0x40 # LED [0] now stays off

wbregs 0x418 0x80 # LEDs [7:4] keep scrolling

wbregs 0x41c 0x80

wbregs 0x420 0x40

etc.

Test Sequence

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Simulation

Test Sequence

Ź Test Sequence

Sim Control

Caution!

Host Control

Hardware

63 / 81

Try creating a test sequence for your simulation

˝ We have 16 slots to play with
˝ How about blinking three times, . . .
˝ While scrolling an LED back and forth?
˝ Hint: You’ll need to look up the WAVEFORM address

Assuming the waveform address is 0x0400

wbregs 0x400 0x11 # Turn LED [0] on

...

Did it work?

˝ If not, why not?
˝ Remember: I’ve been known to leave bugs behind for you to

find and fix

Sim Control

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Simulation

Test Sequence

Test Sequence

Ź Sim Control

Caution!

Host Control

Hardware

64 / 81

Now let’s make that sequence blink

wbregs WAVECTRL 2 # Turn off , reset address

wbregs WAVEFREQ 0x10c70 # Some random frequency

wbregs WAVEFREQ 1 # Start it "playing"

Remember,

˝ You can increase WAVEFREQ to make the sequence go faster
˝ Or decrease WAVEFREQ to make it go slower

Caution!

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Simulation

Test Sequence

Test Sequence

Sim Control

Ź Caution!

Host Control

Hardware

65 / 81

One warning:

˝ If you are generating a VCD file
˝ It can get very big quickly
˝ Kill the simulation with a Ctrl-C before it gets too big

Have fun!

Host Control

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Ź Host Control

Host control

LED blinks

LED blinks

Audio

Sim Challenges

Common Problems

Hardware

66 / 81

Host control

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Ź Host control

LED blinks

LED blinks

Audio

Sim Challenges

Common Problems

Hardware

67 / 81

You should be able to generate a C++ file to control this
sequence

˝ Make the LED’s blink 1-8 times based on a C++ program
˝ Start with wbregs as an example to work from

LED blinks

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

Ź LED blinks

LED blinks

Audio

Sim Challenges

Common Problems

Hardware

68 / 81

Here’s an example control program snippet

b l i n k s = a t o i (argv [1]);

f o r (i n t k=0; k<WAVELEN; k++)

m fpga ->wr i t e i o (RWAVEFORM+k*4, 0);

f o r (i n t k=0; k< b l i n k s

&& k<WAVELEN/2; k++)

m fpga ->wr i t e i o (RWAVEFORM+k*8, 1);

LED blinks

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

Ź LED blinks

Audio

Sim Challenges

Common Problems

Hardware

69 / 81

Sometimes you can go faster by writing all of the values at once

˝ Really depends upon the debugging bus implementation
˝ Ours defines a writei() method we can use

c l a s s DEVBUS {

pub l i c :

typedef u int32 BUSW;

// ...

v i r t u a l vo id w r i t e i (

const BUSW address ,

const i n t len ,

const BUSW *buf) = 0;

˝ If you don’t tell the debugging bus that you want to send a
lot of data then it can’t optimize the transfer

How would our C++ software change if we used writei()?

LED blinks

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

Ź LED blinks

Audio

Sim Challenges

Common Problems

Hardware

70 / 81

Here’s an example C++ program to transfer our data using
writei()

i n t t b l [16];

f o r (i n t k=0; k<WAVELEN; k++)

t b l [k] = 0;

f o r (i n t k=0; k< b l i n k s && k<WAVELEN/2; k++)

t b l [k*8] = 1;

m fpga -> w r i t e i (RWAVEFORM, WAVELEN, t b l);

That’s cool, but might we do some better?

˝ Can you make your LED blink 17 times with a 16-long
memory?

Not fun enough. Let’s do even more.

Audio

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

LED blinks

Ź Audio

Sim Challenges

Common Problems

Hardware

71 / 81

We could easily ...

˝ Adjust our wavelength size to 1024 or more values
˝ Rename o led to something more appropriate for audio, like

o sample

˝ Create a sinewave table

char sbuf [WAVELEN*4];

f o r (i n t k=0; k<WAVELEN*4; k++) {

i n t sample;

sample = (127)* s i n (2.0*M PI*k

/ (double)WAVELEN/4.);

sbuf [k] = (char) sample;

} m fpga -> w r i t e i (RWAVEFORM, WAVELEN, sbuf);

Audio

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

LED blinks

Ź Audio

Sim Challenges

Common Problems

Hardware

72 / 81

If the table holds one wavelength, . . .

˝ Pitch follows from WAVEFREQ and your system clock rate,
fSYS Hz

f “
WAVEFREQ

232
fSYS

˝ That gives us a formula for WAVEFREQ

WAVEFREQ “
fDESIRED

fSYS

2
32

˝ Note that the pitches are evenly spaced in WAVEFREQ

˝ That gives WAVEFREQ units of frequency–just not Hz

Audio

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

LED blinks

Ź Audio

Sim Challenges

Common Problems

Hardware

73 / 81

Here are some pitches you might be interested in

Musical note Frequency (Hz) WAVEFREQ

Middle C 261.6256 0x002be5
D 293.6648 0x003145
E 329.6276 0x00374d
F 349.2282 0x003a97
G 391.9954 0x0041c4
A 440.0000 0x0049d2
B 493.8833 0x0052dc

˝ The WAVEFREQ value was calculated assuming an fSYS

frequency of 100 MHz
˝ You can find more pitches on Wikipedia

https://en.wikipedia.org/wiki/Piano_key_frequencies

Sim Challenges

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

LED blinks

Audio

Ź Sim Challenges

Common Problems

Hardware

74 / 81

Yes, you can simulate this audio design

˝ How will you know if you got the pitch right?
˝ How big does the VCD file need to be to guarantee you

achieved 440 cycles in one second?
˝ It might make more sense to just check a couple pitches

– Consider only checking two cycles of any wavelength
– You might also check against pitches above audio range
– These will be easier to verify in simulation

˝ For example: Try adjusting WAVEFREQ to double the frequency

– Did it double as expected?

We really need to move to hardware though.

Common Problems

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

LED blinks

Audio

Sim Challenges

Ź
Common
Problems

Hardware

75 / 81

Many students struggle with assignments like this

˝ Sending a file of data to an FPGA’s memory is a common
problem

– Where to start?

˝ Students will often start by attaching an on-board CPU
˝ When they run the design, it doesn’t work
˝ They then have no idea why not

– Was the CPU at fault?
– How to get the CPU instructions into memory?
– Was the software broken?

˝ How would you ever debug this?

We’re using a different approach entirely

Common Problems

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Host control

LED blinks

LED blinks

Audio

Sim Challenges

Ź
Common
Problems

Hardware

76 / 81

This approach is unique:

˝ You can simulate it entirely without a proprietary tool chain

– Because everything is open
– You can debug any failing part
– You can trace the failure through parts not your own if

necessary

˝ This simulation includes sending data to the design

– This file can be arbitrary
– Want to send your favorite song?
– You’ll be limited by the size of the RAM on your hardware

˝ And then verifying that the design properly works with the
information we’ve sent it

– You did get it to work, right?

Hardware

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Ź Hardware

Build it!

Upgrades

FM Transmitter

FM Transmitter

77 / 81

Build it!

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

Ź Build it!

Upgrades

FM Transmitter

FM Transmitter

78 / 81

You should be able to make your LED(s) blink in any sequence

˝ Modify the demo design for the number of LEDs you have
˝ Can you make the LED blink once, twice, four times in a

row?
˝ Can you make it blink faster or slower?
˝ What frequency “speed” will cause your LED to blink at

exactly 1Hz?

– Can you make your LED blink at 2Hz using the same
WAVEFREQ value?

Upgrades

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

Build it!

Ź Upgrades

FM Transmitter

FM Transmitter

79 / 81

˝ Our demo doesn’t use the select lines

– How would you modify it to use the select lines?

˝ Can you modify this to create an audio waveform?

– A tone? Game sounds? Different instruments?
– How about arbitrary waveforms: Speech, or music?
– A SONAR pulse? (A tone with a duty cycle)

˝ Can you modify this to “transmit” on FM?

– Perhaps this project will inspire you
– More outputs “transmitting” will increase the signal

strength
– Longer wires from FPGA to output will help to match the

“antenna” for better performance

https://github.com/ZipCPU/wbfmtxhack

FM Transmitter

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

Build it!

Upgrades

Ź FM Transmitter

FM Transmitter

80 / 81

I mentioned you could make an (unintentional) FM transmitter

reg [3 1 : 0] nco_phase , nco_step ;

// Set t h i s a c c o r d i n g to the FM f r equ en c y
// you want to t r a n sm i t on
always @ (posedge i_clk)

nco_step = ? ;

always @ (posedge i_clk)
nco_phase <= nco_phase + nco_step

// S ign extend and s c a l e our sample
+ { (8){ sample [7] } , sample , 16 ’h0 } ;

always @ (posedge i_clk)
o_fm <= nco_step [3 1] ;

˝ Now send o_fm to an antenna

FM Transmitter

Lesson Overview

Project

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

Build it!

Upgrades

FM Transmitter

Ź FM Transmitter

81 / 81

I mentioned you could make an (unintentional) FM transmitter

˝ I need an antenna?

– For “best performance”, yes
– I was able to get it to transmit short distances with only

unconnected FPGA outputs
– For greater distance, I used all of my FPGAs outputs

Ź This got me to 12-18 inches or so
Ź My board was only a half inch wide.
Ź A bigger board, with longer I/O traces should’ve been

better “matched” to the half wavelength of the
frequency I was working at (about a meter)

˝ Feel free to check out this example for more information

https://github.com/ZipCPU/wbfmtx/blob/master/rtl/wbfmtxhack.v

	
	Lesson Overview
	Project
	Waveform Generation
	Project Structure
	Control Requirements
	Memory Core
	Control Core
	Resets?

	Formal Verification
	Property Files
	Memory
	ControlV
	Throughput
	SymbiYosys script
	SymbiYosys and Make
	Do not pass Go

	AutoFPGA
	Bus connection
	Memory Config
	Main insert
	Register Address
	CPU Header
	Simulation
	Simulation
	Control Registers
	Running AutoFPGA

	Simulation
	Simulation
	Test Sequence
	Test Sequence
	Sim Control
	Caution!

	Host Control
	Host control
	LED blinks
	LED blinks
	Audio
	Sim Challenges
	Common Problems

	Hardware
	Build it!
	Upgrades
	FM Transmitter
	FM Transmitter

