10. Adding a FIFO

GissequiSt Daniel E. Gisselquist, Ph.D.

Technology, LLC

—_JW._

(:1-|- Lesson Overview

= Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Serial ports can easily get overloaded with information
o What if the receiver is faster than the transmitter?

— Perhaps you are bridging two separate serial channels, and
each channel has a different baud rate

o If the serial port feeds a CPU, the CPU might not be able to
keep up

Let's build a FIFO to address these problems!

Objectives
o Know how to build and verify a FIFO

2 / 61

-I- Design Goal

Lesson Overview
= Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read

Conclusion

Let's build a design to buffer a line before transmit

d

O

O

The design will first read a line of data
Then write it out sometime later, either ...

— After the design receives a newline, or alternatively
— After the buffer fills

We'll use a FIFO to hold the intermediate data

3 /61

(5] what is a FIFO?

Lesson Overview
Design Goal

= What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

You are probably familiar with waiting in line

Customer gets to the
counter, and may now

do his business

Customers
_ wait in line
Customers arrive,
form a line .
> Line
End, or tail,/
of the line

This could describe . ..

>
\ Head of

the line

o Waiting in line to purchase something

o Waiting in line to see the doctor

o Waiting in line to vote
o Any number of things

4 / 61

(5] What is a FIFO?

Lo Ot You are probably familiar with waiting in line
Design Goal C

. ustomers
= What is a FIFO?
Basic FIFO Design _ wait in line ~ Customer gets to the
method Customers arrive, counter, and may now
FIFO Interface form a line do his business
FIFO Memory >| Line >
Addresses

Formal Verification

FIFO Verification
Cover End, or tail, Head of

Cover Lesson

Line Capturer Of the Iine the Iine

Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation

There are rules to waiting in line

Random Dela - .
’ o You always join and the end of the line

o You get service at the front or head of the line
o “Cutting” in line is frowned upon

Sim Trace
Fixing the read
Conclusion

5 / 61

(5] what is a FIFO?

Lesson Overview
Design Goal

= What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

A FIFO is nothing more than data waiting in line

d

O

O

Information
comes in

e/

pointer

Data waits in the
FIFO for processing

Information gets
processed later

FIFO

Data enters the FIFO at the tail

Data gets processed from the head
Data in the FIFO is stored in block RAM

It's really just that simple

\ Head

pointer

>

6 / 61

(:1_|- Basic FIFO Design

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO
> Design
method
FIFO Interface
FIFO Memory
Addresses
Formal Verification
FIFO Verification
Cover
Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

| clk

| wWr
| data

i rd o data

Let's spend a moment looking at the |/O ports of a FIFO

7 /61

1| Basic FIFO Design

Lesson Overview i clk
Design Goal

What is a FIFO? | wr
Basic FIFO Design .

= method | data
FIFO Interface
FIFO Memory i rd
Addresses

Formal Verification
FIFO Verification
Cover

o data

Cover Lesson
Line Capturer

Using the FIFO o On any i_wr, we'll write i_data to the FIFO

Rx + FIFO o On any i_rd, we'll return o_data from the FIFO
Verifying the FSM

Simulation

Random Delay Not qUite .

Sim Trace

Thfin e reed o What if there's nothing in the FIFO, should the read

Conclusion
succeed?
o What if the FIFO is full, should a write succeed?

8 / 61

(2] FIFO Interface

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

= FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

i clk
.| Wr o full >

| data
I rd o data >
0 empty)

o On any i_wr && lo_full, we'll write i_data to memory
o On any i_rd && 'o_empty, we'll read and return o_data from

memory

We can simplify this by defining:

assign w_wr
assign w_rd

i_wr && lo_full;
= i_rd && !o_empty;

9 / 61

(3l FIFO

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

= FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

i clk
.| Wr o full >

| data
I rd o data >
0 empty)

o On any w_wr, we'll write i_data to our internal memory
o On any w_rd, we'll read and return o_rdata from memory

This is how we'll handle overflows

o It should work much like our i_wb_stb && lo_wb_stall
lesson
o The surrounding context must handle any over- or underflows

10 / 61

https://zipcpu.com/tutorial/lsn-04-pipeline.pdf
https://zipcpu.com/tutorial/lsn-04-pipeline.pdf

G_I- FIFO Memory

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
= FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

The two memory accesses constrain much of our logic

O

Writes to the FIFO memory

// Maintain a write pointer

initial wr_addr = O;

always @(posedge i_clk)

if (w_wr) // Increment on any write
wr_addr <= wr_addr + 1;

// On any write, update the memory
always @(posedge i_clk)
if (w_wr)

fifo_mem|[wr_addr]| <= i_data;

11 / 61

G_I- FIFO Memory
s

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
= FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Our memories constrain much of our logic

o Writes to the FIFO memory
o Reads from the FIFO memory

// Maintain a read pointer

initial rd_addr = 0;

always @(posedge i_clk)

if (w_rd) // Increment on any read
rd_addr <= rd_addr + 1;

// Return the value from the FIFO
// found at the read address
always @(x)

o_data <= fifo_mem|[rd_addr];

Did you notice that this read violates our memory rules? We'll
need to come back to this in a bit.

12 / 61

https://zipcpu.com/tutorial/lsn-08-memory.pdf

(:1-|- Address pointers
e

Lesson Overview There's a trick to the addresses . ..

Design Goal N

What is a FIFO? o For a memory of 2°' elements . ..

ia:tfo';'m e o With an NV bit array index

FIFO Interface

. Mtemory ...you can only use 2" — 1 elements

F> Addresses] — Remember, you need to be able to tell the difference
FIFO Verification between empty (wr_addr == rd_addr) and full

Cover

Cover Lessan o With an NV + 1 bit array index, you can use all 2N elements
Line Capturer

:si”glt:'l‘FeoF'FO parameter BW = 8; // Bits per element
V:r;yingthe oM parameter LGFLEN = 8; // Memory size of 278
Simulation // Define the memory

cancom Delay reg [(BW—1):0] mem [0:(1<<LGFLEN)-—1];

Fixing the read // Give the pointers one extra bit

Conclusion reg [LGFLEN:0| wr_addr, rd_addr;

13 / 61

(:1-|- Address pointers

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory

= Addresses
Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

O

O

O

With an IV + 1 bit array index, you can use all 2N ele

Ny

ments

reg [(BwW—1):0]
reg [LGFLEN:O]

mem [0:(1<<LGFLEN)—1];

wr _addr ,

rd_addr;

The number of items in the FIFO is the address difference

always @(x)
o_fill

wr_addr — rd_addr:

We can now calculate our empty and full outputs

always @(x)
o_empty

always @(x)
o_full

(o_fill = 0);

(o_fill = { 1'b1,

{(LGFLEN){1'b0}} });

14 / 61

-I- Formal Checks

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory

= Addresses
Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

You should get in the habit of writing formal properties as you

write your code

O

Can you think of any appropriate properties from just these

definitions?

15 / 61

(:1-|- Formal Checks

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory

= Addresses
Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

You should get in the habit of writing formal properties as you
write your code

o Can you think of any appropriate properties from just these
definitions?

Example: our fill can never exceed 2"V elements, so let’s keep the
solver from trying such a fill

always @(x*)
assert(o_fill <= { 1'b1,
{(LGFLEN){1'b0}} });

15 / 61

(:1-|- Formal Checks

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory

= Addresses
Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

You should get in the habit of writing formal properties as you
write your code

o We might want to adjust our calculations of o_fill, o_empty,
and o_full later

o Writing an assertion now might help make sure any rewrite
later doesn’t fundamentally change anything

always @(x*)
assert(o_fill
always @(x)
assert (o_empty
always @(x*)
assert(o_full =— (o_fill = { 1'b1,
{(LGFLEN){1'b0}} });

wr_addr — rd_addr);

(o_fill = 0));

Hint: One of the exercises in this lesson is to rewrite this logic

16 / 61

-I- Not there yet

| Overvion Our design isn't there yet

Design Goal

What is a FIFO? o We broke our memory rules

Basic FIFO Design

method — Our design will only work on some architectures
FIFO Interface

FIFO Memory alwa s O x

= Addresses y ()

o_data = fifo_mem[rd_addr|;

Formal Verification
FIFO Verification

Cover — This will work fine on any Xilinx FPGA

Cover Lesson . .]

Line Capturer — This won't map to block RAM on an iCE40

Using the FIFO

Rx + FIFO o Our logic all depends upon w_wr and w_rd

Verifying the FSM

Simulation — These values depend upon o_full and o_empty

Random Delay) .

Sim Trace — These depend upon an N bit subtract and comparison

PRI e s — This will limit the total speed of our design

Conclusion

Let's come back to these issues after we go through simulation

17 / 61

-I- Formal Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory

Addresses
Formal
= Verification

FIFO Verification
Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Review: Memory verification

o Let the solver pick a randem address
o Follow the value at that address
o Verify the design works as intended

for that address only
FIFO's offer a slight twist off of this strategy

18 / 61

https://zipcpu.com/tutorial/lsn-08-memory.pdf

(5] FIFO Verification

Lesson Overview TO Verify d FIFO

Design Goal . i L .
What is a FIFO? o Write two arbitrary values to it in succession

Basic FIFO Desi
AR o Prove that you can then read those same values back later
FIFO Interface

FIFO Memory

Addresses (Arbitra ry
State

Formal Verification
FIFO
= Verification

Cover

Write first value p—{ Write second value

Cover Lesson

Line Capturer
Using the FIFO]
Rx + FIFO Some arbitrary

Verifying the FSM time later ...

Simulation

Random Delay

Sim Trace

—>»| Read first value p—>»{ Read second value |—>

Fixing the read

Conclusion

19 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

To verify a FIFO

o Write two arbitrary values to it in succession

o Prove that you can then read those same values back later

(Arbitrary #0: Idle
State

Write first value —=—{ Write second value

42

Some arbitrary

time later ...

—>»| Read first value p—»{ Read second value

#3

Let's assign states!

19 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

We'll need two consecutive addresses

(x anyconst %) reg [LGFLEN:0| f_first_addr;
reg [LGFLEN:0| f_second_addr;

always @(x)
f _second_addr = f_first_addr + 1;

We'll also need two arbitrary values

(x anyconst =) reg [BW—1:0] f_first_data,
f _second_data:

20 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

Here's our basic state transitions:

always @(posedge i_clk)
case(f_state)
2'hm0: // This is the IDLE state

//

// QOur process starts when we write our

// first value to the FIFO, at the

// first of our chosen two addresses

if (w_wr && (wr_addr =— f_first_addr)
&& (i_data = f_first_data))

f_state <= 2'hil;

//

endcase

21 / 61

Gl

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read

Conclusion

FIFO Verification _ ‘/\/\/‘

Here's our basic state transitions:

always @(posedge i_clk)
case(f_state)
2'h0: // ...
2'hl: // If we read the first value out at
// this stage, then abort our check
if (w_rd && rd_addr =— f_first_addr)
f_state <= 2'h0;
else if (w_wr)
// Otherwise if we write the second
// value then move to the next state.
// If it's the wrong value then abort
// the check
f_state <= (i_data =— f_second_data)
? 2'h2 : 2'hO0;

//

endcase

22 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

Here's our basic state transitions:

i

always @(posedge i_clk)
case(f_state)

2'h0: // ...
2'h1l: // ...

2'h2: // Wait until we read the first value
// back out of the FIFO
if (i_rd && rd_addr =— f_first_addr)
// Then move forward by
// one state
f_state <= 2'h3;

//

endcase

23 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

Here's our basic state transitions:

always @(posedge i_clk)
case(f_state)

2'h0: // ...
2'h1l: // ...
2'h2: // ...

2'h3: // Finally , return to idle when the
// last item is read
if (i_rd) f_state <= 2'hO0;

endcase

24 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

Basic proof:
o |f we are in state one,

— The first address must point to something within the FIFO

— The memory at that location must be our special value

— The write address must point to the second special
address

o |f we are in state two,

— Both the first and second addresses must point to valid
locations within the FIFO

— The values at both locations must match our special
values

O

This is actually harder than it sounds

25 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

How shall we determine if our special address is within the FIFO?

O

a

Write pointer

l

|

Read pointer Special
Address

It must be greater or equal to the read address
It must be less than the write address

26 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

How shall we determine if our special address is within the FIFO?

O

a

Write pointer

l

|

Read pointer Special
Address

It must be greater or equal to the read address
It must be less than the write address

This is actually harder than it sounds

O

The pointers can wrap!

26 / 61

(53] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

How shall we determine if our special address is within the FIFO?

Special
Write pointer Address

l

|

Read pointer

The pointers can wrap!

O

What then does greater or less than mean?

Solution:

O

Unwrap all the pointers by subtracting the read pointer

27 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

To determine if f_first_addr is within the active addresses of
the FIFO:

reg [LGFLEN:0| f_distance_to_first;

always @(x*)

begin
// Unwrap by subtracting the distance
// to the read address
f_distance_to_first

= (f_first_addr — rd_addr);

//

end

f_distance_to_first can now be checked against the FIFO fill,
to determine if the special address references a valid location

within the FIFO

28 / 61

(5] FIFO Verification

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

To determine if f_first_addr is within the active addresses of
the FIFO:

reg [LGFLEN:0| f_distance_to_first;
always @(x*)
begin
// Check the distance into the FIFO
// against the FIFO’'s fill level
if (('o_empty)
&&(f_distance_to_first<o_fill))
f _first_addr_in_fifo = 1;
else
f_first_addr_in_fifo = O0;
end

We'll need to do this to check both addresses

29 / 61

(:1-|- First state

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read

Conclusion

Now we can create assertions for the first state

always @(x)
if (f_state =— 2'b01)
begin
// First value has been written
assert (f_first_addr_in_fifo);
assert(fifo_mem|[f_first_addr]
— f_first_data);

Don't forget, we must be waiting at the second address to write
the second piece of data!

assert (wr_addr =— f_second_addr);
end

We now need to repeat this for the other two states

30 / 61

(:1-|- Second state

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

Here's the second state:

always @(x)
if (f_state = 2'b10)
begin
// First value must be in the FIFO
assert (f_first_addr_in_fifo);
assert(fifo_mem|[f_first_addr]
— f_first_data);

// Second value too!

assert (f_second_addr_in_fifo);

assert(fifo_mem|[f_second_addr|
— f_second_data);

if (rd_addr = f_first_addr)
assert (o_data =— f_first_data);
end

31/ 61

(:1-|- Last state

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

Here's the third and last state

always @(x)
if (f_state =— 2'b11)

begin

end

// Only the second value need be

// in the FIFO

assert(f_second_addr_in_fifo);

assert (fifo_mem|[f_second_addr |
— f_second_data);

// The output data must match our
// second value until the next w_rd
assert(o_data =— f_second_data);

32 /61

_I- SymbiYosys

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

You should now be able to prove this design via induction

33 / 61

_I- SymbiYosys

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO
= Verification

Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx 4+ FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

You should now be able to prove this design via induction

O

Does it pass?

33 / 61

Gl cover

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
= Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

You should also create some cover properties. Here are some of
mine:

initial f_was_full = O0;
always @(posedge i_clk)
if (o_full)

f was_full <= 1;

always @(posedge i_clk)
cover(f_was_full && f_empty);

always @(posedge i_clk)
cover ($past(o_full,Kh2)
&&(!'$past(o_full))&&(o_full));

Of course, these will only pass in a reasonable time if the
memory size is small

34 / 61

(:1_|- Cover Lesson Learned

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

= Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read

Conclusion

| was once burned by going through all the motions of formal
verification, only to have the design fail in simulation

o The design was a data cache
o | had verified both interfaces

— All the bus properties were met
— The CPU could depend upon the resulting interface

o | covered the return from a request

— The cache went to the bus to get the requested value

— The values returned by the bus were properly placed into

the cache
— The core then returned the right value

The resulting code failed in practice

35 / 61

(:1_|- Cover Lesson Learned

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

= Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read

Conclusion

| was once burned by going through all the motions of formal
verification, only to have the design fail in simulation

o The design was a data cache
o | had verified both interfaces

— All the bus properties were met
— The CPU could depend upon the resulting interface

o | covered the return from a request

— The cache went to the bus to get the requested value

— The values returned by the bus were properly placed into

the cache
— The core then returned the right value

The resulting code failed in practice

o What went wrong?

35 / 61

-I- Cover Lesson Learned

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

= Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

The problem?

O

The cache never raised its ready line to indicate it was ready

for the next request
Once it became busy, it never returned to idle
The CPU froze on its second memory access

36 / 61

-I- Cover Lesson Learned

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

= Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

The problem?

o The cache never raised its ready line to indicate it was ready

for the next request

o Once it became busy, it never returned to idle
o The CPU froze on its second memory access

Ever since this painful lesson, I've made a point to cover the
return to an idle state following the covered state

o That's the reason for the f_empty check in the cover

statement below

always @(posedge i_clk)
cover(f_was_full && f_empty);

36 / 61

(:1-|- Line Capturer

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

= Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Let’s build a line capturer

IDLE

Y

Newline?

80 chars
filled?

Yes

Character received

We now have a FIFO, what shall we do with it?

Y

Read from FIFO

Line
complete?

37 / 61

(3] Using the FIFO

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer

> Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

We now have a FIFO, what shall we do with it?

O

1.

Let’s build a line capturer

When it receives a character from the serial port, it places it
into the FIFO

Once either the line has reached (or past 80) characters, we'll
dump the FIFO to the serial port transmitter

Likewise, on any new line, we'll dump the FIFO to the serial
port transmitter.

Think of this like an old fashioned printer:

a

Once the print head starts moving from left to right, it moves
across the page at a constant speed

You don't want to start the head moving until a whole line is
available

38 / 61

(2] Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Step one: the receiver must feed the FIFO

i

// Serial port Receiver
rxuart #(.CLOCKS_PER_BAUD(CLOCKS_PER_BAUD))
receiver(i_clk, i_uart_rx, rx_stb,
rx_data);

// QOur synchronous FIFO
// Fed directly from the receiver
sfifo #(.BW(8), .LGFLEN(8))
fifo(i_clk, rx_stb, rx_data, fifo_full
fifo_fill,
fifo_rd, tx_data, fifo_empty);

39 / 61

(2] Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Step two: Build a basic FSM to control the FIFO reads

o We'll use run_tx to say we are currently transmitting
o line_count captures the number of items left to write

initial run_tx = 0;
initial line_count = O0;
always @(posedge i_clk)
if (rx_stb && (rx_data =— 8'ha
|| rx_data = 8'hd))
begin // Start reading on any received newline
// or carriage return
run_tx <= 1'b1;
line_count <= fifo_fill[7:0];
end else if (!run_tx)
begin

//

40 / 61

.l Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Step two: Build a basic FSM to control the FIFO reads

o We'll use run_tx to say we are currently transmitting
o line_count captures the number of items left to write

//

end else if (!run_tx)

begin // If we're not currently running

if (fifo_fill >= 9'dso0)

begin // Start running when a
// full line has been
run_tx <= 1'bl; // received
line_count <= 80;

//

41 / 61

.l Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Step two: Build a basic FSM to control the FIFO reads

o We'll use run_tx to say we are currently transmitting
o line_count captures the number of items left to write

//

end else if (!fifo_empty && !tx_busy)
begin // If we are running, then keep going
// until our line_count gets down
// to zero
line_count <= line_count — 1;
if (line_count =— 1)
run_tx <= 0;
end

42 / 61

.l Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Last steps:

O

O

Read from the FIFO any time we send to the transmitter

always @(x)
fifo_rd = (tx_stb && !tx_busy);

Activate the transmitter anytime run_tx is true

always @(x)
tx_stb = (run_tx && !fifo_empty);

43 / 61

.l Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Last steps:

o Read from the FIFO any time we send to the transmitter

always @(x)
fifo_rd = (tx_stb && !tx_busy);

o Activate the transmitter anytime run_tx is true

always @(x)
tx_stb = (run_tx && !fifo_empty);

Q: Can the check for whether the FIFO is empty be removed?

43 / 61

(2] Rx + FIFO

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
> Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

Last steps:

o Read from the FIFO any time we send to the transmitter

always @(x)

fifo_rd (tx_stb && !tx_busy);

o Activate the transmitter anytime run_tx is true

always @(x)

tx_stb (run_tx && !fifo_empty);

Q: Can the check for whether the FIFO is empty be removed?

Q: How would you know? Would a formal check help?

43 / 61

(3] Verifying the FSM

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method
FIFO Interface
FIFO Memory
Addresses
Formal Verification
FIFO Verification
Cover
Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the
> FSM
Simulation
Random Delay
Sim Trace
Fixing the read
Conclusion

You should be able to formally verify that this works

o Don't reverify the FIFO
o Consider letting the solver pick the output of the FIFO

i

(x anyseq %) reg formal_data;
always @(x)
o_data = formal_data:

o Focus on the FIFO flags
What properties would you use to verify this FSM design?

o Don't forget to abstract the serial ports

o You may need to assume the receiver is slower than the

transmitter

44 / 61

-I Simulation

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
= Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

At this point, you know all that is needed to build a simulation

o We have a serial port transmitter, and simulation

o We have a serial port receiver, and simulation

o We've learned to interact with our design over an O/S pipe
that communicates with a child process running the Verilator
based simulation

o Indeed, the simulation should look very similar to the one
from our last lesson

What more might we need?

45 / 61

https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf

-I Simulation

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
= Simulation
Random Delay
Sim Trace

Fixing the read
Conclusion

At this point, you know all that is needed to build a simulation

o We have a serial port transmitter, and simulation

o We have a serial port receiver, and simulation

o We've learned to interact with our design over an O/S pipe
that communicates with a child process running the Verilator
based simulation

o Indeed, the simulation should look very similar to the one
from our last lesson

What more might we need?
There's one problem: the simulation trace reveals that ...

o The last simulation doesn’t really exercise our design

Let's fix this!

45 / 61

https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf

(:1-|- Random Delay

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation

= Random Delay
Sim Trace

Fixing the read
Conclusion

Here's the key: let's add a random delay between incoming Dytes

o We'll use m_delay to capture this delay
o We'll drain it to zero before sending a new character

int UARTSIM: : operator () (const int i_tx) {

//

if (m_tx_state == TXIDLE)

if (m_delay > 0) {
// Wait for a delay to complete
// before checking for a new
// data byte
m_delay --;
+ else {
// Continue as before and ask
// the 0/S for new data byte

46 / 61

(:1-|- Random Delay

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation

= Random Delay
Sim Trace

Fixing the read
Conclusion

Here's the key: let's add a random delay between incoming Dytes

o We'll use m_delay to capture this delay
o We'll create a random delay at the end of every transmitted
character

int UARTSIM: : operator () (const int i_tx) {

// .
} else if (m_tx_baudcounter <= 0) {

if (!'m_tx_busy) {

// Returm to tdle

m_tx_state = TXIDLE;

if ((rand() & Ox1f)>12)

m_delay = (rand() & 0x07f)
* m_baud_counts;

//

47 / 61

(:1-|- Simulation

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation

= Random Delay
Sim Trace

Fixing the read
Conclusion

You should now be able to run the simulation

48 / 61

-I- Sim Trace

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson
Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
> Sim Trace
Fixing the read
Conclusion

Here's the trace | got from running the simulation

Time
i uvart_rx
0 uart tx

o Notice the pseudorandom incoming byte stream, and
o The very bursty transmit stream

This was exactly what we wanted!

49 / 61

1| Fixing the read

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

What we've built is a first word fall through FIFO
o That won't work on an iICE40

— Because all block RAM reads on an iCE40 must be

registered
— The hardware doesn't exist on an iCE40 to do otherwise

o This was our problem code

always @(x)
o_data <= fifo_mem|[rd_addr];

How shall we fix this?

50 / 61

1] Fixing the read

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

Solution one: bypass the memory

o On a write, store the value in memory and in a register
o On the next clock, offer the register value as a result
o We'll also need to adjust the read address

— The memory read address needs to be the address it will
be on the next clock

Let's see what this would look like

51 / 61

(:1-|- Bypass memory

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

Our basic logic will be to capture two memory values, and select
between them

O

a

The first is placed in a register

always @(posedge i_clk)
bypass_data <= i_data,;

The second is read from the memory

always @(x)
rd_next = rd_addr |[LGFLEN —1:0] + 1;

always @(posedge i_clk)
rd_data <= mem|[(w_rd)?rd_next
rd_addr [LGFLEN —1:0]];

52 / 61

-I- Bypass memory

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design

method -
FIFO Interface 0
FIFO Memory

Addresses -

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

Our basic logic will be to capture two memory values, and select
between them

The first is placed in a register
The second is read from the memory
Then we select between them

always @(x)

o_data = (bypass_valid) ? bypass_data

rd_data;

53 / 61

(:1-|- Bypass memory

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

The trick is the selector, bypass_valid, that tells us which value
to return

initial bypass_valid = 0;
always @(posedge i_clk)
begin
bypass_valid <= 1'b0;
if ('i_wr)
// If we haven 't written to the
// FIFO in the last cycle, the
// memory read will be good
bypass_valid <= 1'b0;
//
end

54 / 61

(:1-|- Bypass memory

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

The trick is the selector, bypass_valid, that tells us which value
to return

initial bypass_valid = 0;
always @(posedge i_clk)

begin
bypass_valid <= 1'b0;
if ('i_wr)
bypass_valid <= 1'b0;
else if (o_empty ||(i_rd&&(o_£fill = 1)))
// Otherwise if we read, and the
// memory is now empty, use the
// register value
bypass_valid <= 1'b1;
// Remember, the last assignment wins
end

You can use formal methods to prove the result is the same

55 / 61

(3] Fixing the read

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

Solution two: Work with the registered output

o We could just use the registered data

i

always @(posedge i_clk)
o_data <= mem[(w_rd)?rd_next
rd_addr [LGFLEN —1:0]];

o The biggest problem would be our empty FIFO logic

— |t would need to be delayed by one clock

initial o_empty = 1;

always @(posedge i_clk)

if ((o_fill > 1)||((o0o_fill = 1)&&('w_rd)))
o_empty <= 1'b0;

else
o_empty <= 1'b1;

56 / 61

-I- Exercise #1

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

Pick a solution to our memory problem and

O

O

Formally verify it

Prove that it still meets the two write/two read criteria of a

FIFO

57 / 61

(:1-|- Exercise #2

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

All of our o_fill and o_full logic is combinatorial

O

This will prevent keep us from using our FIFO in a high speed

design
Solution: Rewrite this logic so that it's registered

always @(posedge i_clk)
o_fill <= // Your logic here

always @(posedge i_clk)
o_full <= // Your logic here

Use the formal solver to formally prove that it still meets the
properties required of o_fill and o_full

58 / 61

-I Exercise

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO

Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read

Conclusion

Are you ready? Let'’s build this!

o Create this design, and place it on your FPGA
o You've already formally verified and simulated it, right?

— So ...it should work on the hardware the first time, right?

(Guilty admission: Mine still didn’t work the first time . ..)

59 / 61

(:1-|- Questions

Lesson Overview
Design Goal

What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

> Fixing the read
Conclusion

Many serial port implementations use RTS and CTS signals

— How might you use the FIFO level to stop an upstream
transmitter when the FIFO was (nearly) full? Don’t forget
these things don't stop on a dime.

— How might a downstream receiver signal to this design to
stop transmitting, since its FIFO was (nearly) full?

Most packet format end with a CRC

— How would you modify this design to add and check a
CRC?

Many packet formats have either a fixed length, or a length
specifier

— How would a variable packet length change things?

60 / 61

-I Conclusion

Lesson Overview
Design Goal
What is a FIFO?
Basic FIFO Design
method

FIFO Interface
FIFO Memory
Addresses

Formal Verification
FIFO Verification
Cover

Cover Lesson

Line Capturer
Using the FIFO
Rx + FIFO
Verifying the FSM
Simulation
Random Delay
Sim Trace

Fixing the read
= Conclusion

What did we learn this lesson?

o What a FIFO is, and why you might use one

o How to formally verify a FIFO

o Some of the problems associated with reading the data from
a FIFO on different pieces of hardware

o How to eliminate combinatorial logic, while making sure that
the design functionality doesn’t change

61 / 61

	
	Lesson Overview
	Design Goal
	What is a FIFO?
	Basic FIFO Design
	FIFO Interface
	FIFO Memory
	Addresses
	Formal Verification
	FIFO Verification
	Cover
	Cover Lesson Learned
	Line Capturer
	Using the FIFO
	Rx + FIFO
	Verifying the FSM
	Simulation
	Random Delay
	Sim Trace
	Fixing the read
	Conclusion

