
Gisselquist
Technology, LLC

10. Adding a FIFO

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

2 / 61

Serial ports can easily get overloaded with information

˝ What if the receiver is faster than the transmitter?

– Perhaps you are bridging two separate serial channels, and
each channel has a different baud rate

˝ If the serial port feeds a CPU, the CPU might not be able to
keep up

Let’s build a FIFO to address these problems!

Objectives

˝ Know how to build and verify a FIFO

Design Goal

Lesson Overview

Ź Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

3 / 61

Let’s build a design to buffer a line before transmit

˝ The design will first read a line of data
˝ Then write it out sometime later, either . . .

– After the design receives a newline, or alternatively
– After the buffer fills

˝ We’ll use a FIFO to hold the intermediate data

What is a FIFO?

Lesson Overview

Design Goal

Ź What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

4 / 61

You are probably familiar with waiting in line

This could describe . . .

˝ Waiting in line to purchase something
˝ Waiting in line to see the doctor
˝ Waiting in line to vote
˝ Any number of things

What is a FIFO?

Lesson Overview

Design Goal

Ź What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

5 / 61

You are probably familiar with waiting in line

There are rules to waiting in line

˝ You always join and the end of the line
˝ You get service at the front or head of the line
˝ “Cutting” in line is frowned upon

What is a FIFO?

Lesson Overview

Design Goal

Ź What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

6 / 61

A FIFO is nothing more than data waiting in line

˝ Data enters the FIFO at the tail
˝ Data gets processed from the head
˝ Data in the FIFO is stored in block RAM

It’s really just that simple

Basic FIFO Design

Lesson Overview

Design Goal

What is a FIFO?

Ź
Basic FIFO
Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

7 / 61

Let’s spend a moment looking at the I/O ports of a FIFO

Basic FIFO Design

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

Ź method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

8 / 61

˝ On any i_wr, we’ll write i_data to the FIFO
˝ On any i_rd, we’ll return o_data from the FIFO

Not quite . . .

˝ What if there’s nothing in the FIFO, should the read
succeed?

˝ What if the FIFO is full, should a write succeed?

FIFO Interface

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

Ź FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

9 / 61

˝ On any i_wr && !o_full, we’ll write i_data to memory
˝ On any i_rd && !o_empty, we’ll read and return o_data from

memory

We can simplify this by defining:

ass ign w_wr = i_wr && ! o_full ;
ass ign w_rd = i_rd && ! o_empty ;

FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

Ź FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

10 / 61

˝ On any w_wr, we’ll write i_data to our internal memory
˝ On any w_rd, we’ll read and return o_rdata from memory

This is how we’ll handle overflows

˝ It should work much like our i_wb_stb && !o_wb_stall

lesson
˝ The surrounding context must handle any over- or underflows

https://zipcpu.com/tutorial/lsn-04-pipeline.pdf
https://zipcpu.com/tutorial/lsn-04-pipeline.pdf

FIFO Memory

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

Ź FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

11 / 61

The two memory accesses constrain much of our logic

˝ Writes to the FIFO memory

// Mainta in a w r i t e p o i n t e r
i n i t i a l wr_addr = 0 ;
always @ (posedge i_clk)
i f (w_wr) // Inc r ement on any w r i t e

wr_addr <= wr_addr + 1 ;

// On any wr i t e , update the memory
always @ (posedge i_clk)
i f (w_wr)

fifo_mem [wr_addr] <= i_data ;

FIFO Memory

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

Ź FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

12 / 61

Our memories constrain much of our logic

˝ Writes to the FIFO memory
˝ Reads from the FIFO memory

// Mainta in a read p o i n t e r
i n i t i a l rd_addr = 0 ;
always @ (posedge i_clk)
i f (w_rd) // Inc r ement on any read

rd_addr <= rd_addr + 1 ;

// Return the v a l u e from the FIFO
// found at the read add r e s s
always @ (∗)

o_data <= fifo_mem [rd_addr] ;

Did you notice that this read violates our memory rules? We’ll
need to come back to this in a bit.

https://zipcpu.com/tutorial/lsn-08-memory.pdf

Address pointers

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Ź Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

13 / 61

There’s a trick to the addresses . . .

˝ For a memory of 2N elements . . .
˝ With an N bit array index

. . . you can only use 2
N

´ 1 elements
– Remember, you need to be able to tell the difference

between empty (wr_addr == rd_addr) and full

˝ With an N ` 1 bit array index, you can use all 2N elements

parameter BW = 8 ; // B i t s pe r e l ement
parameter LGFLEN = 8 ; // Memory s i z e o f 2ˆ8
// De f i n e the memory
reg [(BW ´1) :0] mem [0:(1<<LGFLEN) ´1] ;
// Give the p o i n t e r s one e x t r a b i t
reg [LGFLEN : 0] wr_addr , rd_addr ;

Address pointers

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Ź Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

14 / 61

˝ With an N ` 1 bit array index, you can use all 2N elements

reg [(BW ´1) :0] mem [0:(1<<LGFLEN) ´1] ;
reg [LGFLEN : 0] wr_addr , rd_addr ;

˝ The number of items in the FIFO is the address difference

always @ (∗)
o_fill = wr_addr ´ rd_addr ;

˝ We can now calculate our empty and full outputs

always @ (∗)
o_empty = (o_fill == 0) ;

always @ (∗)
o_full = (o_fill == { 1 ’b1 ,

{(LGFLEN){1 ’ b0}} }) ;

Formal Checks

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Ź Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

15 / 61

You should get in the habit of writing formal properties as you
write your code

˝ Can you think of any appropriate properties from just these
definitions?

Formal Checks

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Ź Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

15 / 61

You should get in the habit of writing formal properties as you
write your code

˝ Can you think of any appropriate properties from just these
definitions?

Example: our fill can never exceed 2
N elements, so let’s keep the

solver from trying such a fill

always @ (∗)
as se r t (o_fill <= { 1 ’b1 ,

{(LGFLEN){1 ’ b0}} }) ;

Formal Checks

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Ź Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

16 / 61

You should get in the habit of writing formal properties as you
write your code

˝ We might want to adjust our calculations of o_fill, o_empty,
and o_full later

˝ Writing an assertion now might help make sure any rewrite
later doesn’t fundamentally change anything

always @ (∗)
as se r t (o_fill == wr_addr ´ rd_addr) ;

always @ (∗)
as se r t (o_empty == (o_fill == 0)) ;

always @ (∗)
as se r t (o_full == (o_fill == { 1 ’b1 ,

{(LGFLEN){1 ’ b0}} }) ;

Hint: One of the exercises in this lesson is to rewrite this logic

Not there yet

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Ź Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

17 / 61

Our design isn’t there yet

˝ We broke our memory rules

– Our design will only work on some architectures

always @ (∗)
o_data = fifo_mem [rd_addr] ;

– This will work fine on any Xilinx FPGA
– This won’t map to block RAM on an iCE40

˝ Our logic all depends upon w_wr and w_rd

– These values depend upon o_full and o_empty

– These depend upon an N bit subtract and comparison
– This will limit the total speed of our design

Let’s come back to these issues after we go through simulation

Formal Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Ź
Formal
Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

18 / 61

Review: Memory verification

˝ Let the solver pick a random address
˝ Follow the value at that address
˝ Verify the design works as intended

for that address only

FIFO’s offer a slight twist off of this strategy

https://zipcpu.com/tutorial/lsn-08-memory.pdf

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

19 / 61

To verify a FIFO

˝ Write two arbitrary values to it in succession
˝ Prove that you can then read those same values back later

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

19 / 61

To verify a FIFO

˝ Write two arbitrary values to it in succession
˝ Prove that you can then read those same values back later

#0: Idle

#1 #2

#3 #0

Let’s assign states!

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

20 / 61

We’ll need two consecutive addresses

(∗ anyconst ∗) reg [LGFLEN : 0] f_first_addr ;
reg [LGFLEN : 0] f_second_addr ;

always @ (∗)
f_second_addr = f_first_addr + 1 ;

We’ll also need two arbitrary values

(∗ anyconst ∗) reg [BW´1:0] f_first_data ,
f_second_data ;

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

21 / 61

Here’s our basic state transitions:

always @ (posedge i_clk)
case (f_state)
2 ’h0 : // Thi s i s the IDLE s t a t e

//
// Our p r o c e s s s t a r t s when we w r i t e our
// f i r s t v a l u e to the FIFO , at the
// f i r s t o f our chosen two add r e s s e s
i f (w_wr && (wr_addr == f_first_addr)

&& (i_data == f_first_data))
f_state <= 2 ’h1 ;

// . . .
endcase

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

22 / 61

Here’s our basic state transitions:

always @ (posedge i_clk)
case (f_state)
2 ’h0 : // . . .
2 ’h1 : // I f we read the f i r s t v a l u e out at

// t h i s s tage , then abo r t our check
i f (w_rd && rd_addr == f_first_addr)

f_state <= 2 ’h0 ;
e l s e i f (w_wr)
// Othe rw i s e i f we w r i t e the second
// va l u e then move to the next s t a t e .
// I f i t ’ s the wrong va l u e then abo r t
// the check
f_state <= (i_data == f_second_data)

? 2 ’h2 : 2 ’h0 ;
// . . .
endcase

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

23 / 61

Here’s our basic state transitions:

always @ (posedge i_clk)
case (f_state)
2 ’h0 : // . . .
2 ’h1 : // . . .
2 ’h2 : // Wait u n t i l we read the f i r s t v a l u e

// back out o f the FIFO
i f (i_rd && rd_addr == f_first_addr)

// Then move fo rwa rd by
// one s t a t e
f_state <= 2 ’h3 ;

// . . .
endcase

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

24 / 61

Here’s our basic state transitions:

always @ (posedge i_clk)
case (f_state)
2 ’h0 : // . . .
2 ’h1 : // . . .
2 ’h2 : // . . .
2 ’h3 : // F i n a l l y , r e t u r n to i d l e when the

// l a s t i tem i s r ead
i f (i_rd) f_state <= 2 ’h0 ;

endcase

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

25 / 61

Basic proof:

˝ If we are in state one,

– The first address must point to something within the FIFO
– The memory at that location must be our special value
– The write address must point to the second special

address

˝ If we are in state two,

– Both the first and second addresses must point to valid
locations within the FIFO

– The values at both locations must match our special
values

˝ . . .

This is actually harder than it sounds

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

26 / 61

How shall we determine if our special address is within the FIFO?

˝ It must be greater or equal to the read address
˝ It must be less than the write address

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

26 / 61

How shall we determine if our special address is within the FIFO?

˝ It must be greater or equal to the read address
˝ It must be less than the write address

This is actually harder than it sounds

˝ The pointers can wrap!

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

27 / 61

How shall we determine if our special address is within the FIFO?

The pointers can wrap!

˝ What then does greater or less than mean?

Solution:

˝ Unwrap all the pointers by subtracting the read pointer

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

28 / 61

To determine if f_first_addr is within the active addresses of
the FIFO:

reg [LGFLEN : 0] f_distance_to_first ;
always @ (∗)
begin

// Unwrap by s u b t r a c t i n g the d i s t a n c e
// to the read add r e s s
f_distance_to_first

= (f_first_addr ´ rd_addr) ;
// . . .

end

f_distance_to_first can now be checked against the FIFO fill,
to determine if the special address references a valid location
within the FIFO

FIFO Verification

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

29 / 61

To determine if f_first_addr is within the active addresses of
the FIFO:

reg [LGFLEN : 0] f_distance_to_first ;
always @ (∗)
begin

// Check the d i s t a n c e i n t o the FIFO
// a g a i n s t the FIFO ’ s f i l l l e v e l
i f ((! o_empty)

&&(f_distance_to_first<o_fill))
f_first_addr_in_fifo = 1 ;

e l s e

f_first_addr_in_fifo = 0 ;
end

We’ll need to do this to check both addresses

First state

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

30 / 61

Now we can create assertions for the first state

always @ (∗)
i f (f_state == 2 ’ b01)
begin

// F i r s t v a l u e has been w r i t t e n
as se r t (f_first_addr_in_fifo) ;
as se r t (fifo_mem [f_first_addr]

== f_first_data) ;

Don’t forget, we must be waiting at the second address to write
the second piece of data!

as se r t (wr_addr == f_second_addr) ;
end

We now need to repeat this for the other two states

Second state

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

31 / 61

Here’s the second state:

always @ (∗)
i f (f_state == 2 ’ b10)
begin

// F i r s t v a l u e must be i n the FIFO
as se r t (f_first_addr_in_fifo) ;
as se r t (fifo_mem [f_first_addr]

== f_first_data) ;

// Second va l u e too !
as se r t (f_second_addr_in_fifo) ;
as se r t (fifo_mem [f_second_addr]

== f_second_data) ;

i f (rd_addr == f_first_addr)
as se r t (o_data == f_first_data) ;

end

Last state

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

32 / 61

Here’s the third and last state

always @ (∗)
i f (f_state == 2 ’ b11)
begin

// Only the second va l u e need be
// i n the FIFO
as se r t (f_second_addr_in_fifo) ;
as se r t (fifo_mem [f_second_addr]

== f_second_data) ;

// The output data must match our
// second va l u e u n t i l the nex t w rd
as se r t (o_data == f_second_data) ;

end

SymbiYosys

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

33 / 61

You should now be able to prove this design via induction

SymbiYosys

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

Ź
FIFO
Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

33 / 61

You should now be able to prove this design via induction

˝ Does it pass?

Cover

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Ź Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

34 / 61

You should also create some cover properties. Here are some of
mine:

i n i t i a l f_was_full = 0 ;
always @ (posedge i_clk)
i f (o_full)

f_was_full <= 1 ;

always @ (posedge i_clk)
cover (f_was_full && f_empty) ;

always @ (posedge i_clk)
cover ($past (o_full , 2)

&&(!$past (o_full))&&(o_full)) ;

Of course, these will only pass in a reasonable time if the
memory size is small

Cover Lesson Learned

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Ź Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

35 / 61

I was once burned by going through all the motions of formal
verification, only to have the design fail in simulation

˝ The design was a data cache
˝ I had verified both interfaces

– All the bus properties were met
– The CPU could depend upon the resulting interface

˝ I covered the return from a request

– The cache went to the bus to get the requested value
– The values returned by the bus were properly placed into

the cache
– The core then returned the right value

The resulting code failed in practice

Cover Lesson Learned

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Ź Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

35 / 61

I was once burned by going through all the motions of formal
verification, only to have the design fail in simulation

˝ The design was a data cache
˝ I had verified both interfaces

– All the bus properties were met
– The CPU could depend upon the resulting interface

˝ I covered the return from a request

– The cache went to the bus to get the requested value
– The values returned by the bus were properly placed into

the cache
– The core then returned the right value

The resulting code failed in practice

˝ What went wrong?

Cover Lesson Learned

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Ź Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

36 / 61

The problem?

˝ The cache never raised its ready line to indicate it was ready
for the next request

˝ Once it became busy, it never returned to idle
˝ The CPU froze on its second memory access

Cover Lesson Learned

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Ź Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

36 / 61

The problem?

˝ The cache never raised its ready line to indicate it was ready
for the next request

˝ Once it became busy, it never returned to idle
˝ The CPU froze on its second memory access

Ever since this painful lesson, I’ve made a point to cover the
return to an idle state following the covered state

˝ That’s the reason for the f_empty check in the cover
statement below

always @ (posedge i_clk)
cover (f_was_full && f_empty) ;

Line Capturer

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Ź Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

37 / 61

We now have a FIFO, what shall we do with it?

˝ Let’s build a line capturer

Using the FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Ź Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

38 / 61

We now have a FIFO, what shall we do with it?

˝ Let’s build a line capturer
1. When it receives a character from the serial port, it places it

into the FIFO
2. Once either the line has reached (or past 80) characters, we’ll

dump the FIFO to the serial port transmitter
3. Likewise, on any new line, we’ll dump the FIFO to the serial

port transmitter.

Think of this like an old fashioned printer:

˝ Once the print head starts moving from left to right, it moves
across the page at a constant speed

˝ You don’t want to start the head moving until a whole line is
available

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

39 / 61

Step one: the receiver must feed the FIFO

// S e r i a l po r t R e c e i v e r
rxuart #(.CLOCKS_PER_BAUD (CLOCKS_PER_BAUD))

receiver (i_clk , i_uart_rx , rx_stb ,
rx_data) ;

// Our synch ronous FIFO
// Fed d i r e c t l y from the r e c e i v e r
sfifo #(.BW (8) , . LGFLEN (8))

fifo (i_clk , rx_stb , rx_data , fifo_full ,
fifo_fill ,

fifo_rd , tx_data , fifo_empty) ;

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

40 / 61

Step two: Build a basic FSM to control the FIFO reads

˝ We’ll use run_tx to say we are currently transmitting
˝ line_count captures the number of items left to write

i n i t i a l run_tx = 0 ;
i n i t i a l line_count = 0 ;
always @ (posedge i_clk)
i f (rx_stb && (rx_data == 8 ’ha

| | rx_data == 8 ’hd))
begin // S t a r t r e a d i n g on any r e c e i v e d new l i n e

// or c a r r i a g e r e t u r n
run_tx <= 1 ’b1 ;
line_count <= fifo_fill [7 : 0] ;

end e l s e i f (! run_tx)
begin

//

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

41 / 61

Step two: Build a basic FSM to control the FIFO reads

˝ We’ll use run_tx to say we are currently transmitting
˝ line_count captures the number of items left to write

// . . .
end e l s e i f (! run_tx)
begin // I f we ’ r e not c u r r e n t l y runn ing

i f (fifo_fill >= 9 ’ d80)
begin // S t a r t r unn ing when a

// f u l l l i n e has been
run_tx <= 1 ’b1 ; // r e c e i v e d
line_count <= 80 ;

// . . .

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

42 / 61

Step two: Build a basic FSM to control the FIFO reads

˝ We’ll use run_tx to say we are currently transmitting
˝ line_count captures the number of items left to write

// . . .
end e l s e i f (! fifo_empty && ! tx_busy)
begin // I f we a r e runn ing , then keep go ing

// u n t i l our l i n e c o u n t g e t s down
// to z e r o
line_count <= line_count ´ 1 ;
i f (line_count == 1)

run_tx <= 0 ;
end

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

43 / 61

Last steps:

˝ Read from the FIFO any time we send to the transmitter

always @ (∗)
fifo_rd = (tx_stb && ! tx_busy) ;

˝ Activate the transmitter anytime run_tx is true

always @ (∗)
tx_stb = (run_tx && ! fifo_empty) ;

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

43 / 61

Last steps:

˝ Read from the FIFO any time we send to the transmitter

always @ (∗)
fifo_rd = (tx_stb && ! tx_busy) ;

˝ Activate the transmitter anytime run_tx is true

always @ (∗)
tx_stb = (run_tx && ! fifo_empty) ;

Q: Can the check for whether the FIFO is empty be removed?

Rx + FIFO

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Ź Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

43 / 61

Last steps:

˝ Read from the FIFO any time we send to the transmitter

always @ (∗)
fifo_rd = (tx_stb && ! tx_busy) ;

˝ Activate the transmitter anytime run_tx is true

always @ (∗)
tx_stb = (run_tx && ! fifo_empty) ;

Q: Can the check for whether the FIFO is empty be removed?
Q: How would you know? Would a formal check help?

Verifying the FSM

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Ź
Verifying the
FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

44 / 61

You should be able to formally verify that this works

˝ Don’t reverify the FIFO
˝ Consider letting the solver pick the output of the FIFO

(∗ anyseq ∗) reg formal_data ;
always @ (∗)

o_data = formal_data ;

˝ Focus on the FIFO flags

What properties would you use to verify this FSM design?

˝ Don’t forget to abstract the serial ports
˝ You may need to assume the receiver is slower than the

transmitter

Simulation

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Ź Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

45 / 61

At this point, you know all that is needed to build a simulation

˝ We have a serial port transmitter, and simulation
˝ We have a serial port receiver, and simulation
˝ We’ve learned to interact with our design over an O/S pipe

that communicates with a child process running the Verilator
based simulation

˝ Indeed, the simulation should look very similar to the one
from our last lesson

What more might we need?

https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf

Simulation

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Ź Simulation

Random Delay

Sim Trace

Fixing the read

Conclusion

45 / 61

At this point, you know all that is needed to build a simulation

˝ We have a serial port transmitter, and simulation
˝ We have a serial port receiver, and simulation
˝ We’ve learned to interact with our design over an O/S pipe

that communicates with a child process running the Verilator
based simulation

˝ Indeed, the simulation should look very similar to the one
from our last lesson

What more might we need?
There’s one problem: the simulation trace reveals that . . .

˝ The last simulation doesn’t really exercise our design

Let’s fix this!

https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-06-txdata.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf
https://zipcpu.com/tutorial/lsn-09-serialrx.pdf

Random Delay

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Ź Random Delay

Sim Trace

Fixing the read

Conclusion

46 / 61

Here’s the key: let’s add a random delay between incoming bytes

˝ We’ll use m delay to capture this delay
˝ We’ll drain it to zero before sending a new character

i n t UARTSIM:: operato r ()(const i n t i t x) {

// ...

i f (m tx state == TXIDLE)

i f (m delay > 0) {

// Wait for a delay to complete

// before checking for a new

// data byte

m delay --;

} e l s e {

// Continue as before and ask

// the O/S for new data byte

Random Delay

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Ź Random Delay

Sim Trace

Fixing the read

Conclusion

47 / 61

Here’s the key: let’s add a random delay between incoming bytes

˝ We’ll use m delay to capture this delay
˝ We’ll create a random delay at the end of every transmitted

character

i n t UARTSIM:: operato r ()(const i n t i t x) {

// ...

} e l s e i f (m tx baudcounter <= 0) {

i f (!m tx busy) {

// Return to idle

m tx state = TXIDLE;

i f ((rand () & 0 x1f)>12)

m delay = (rand () & 0 x07f)

* m baud counts;

// ...

Simulation

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Ź Random Delay

Sim Trace

Fixing the read

Conclusion

48 / 61

You should now be able to run the simulation

Sim Trace

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Ź Sim Trace

Fixing the read

Conclusion

49 / 61

Here’s the trace I got from running the simulation

˝ Notice the pseudorandom incoming byte stream, and
˝ The very bursty transmit stream

This was exactly what we wanted!

Fixing the read

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

50 / 61

What we’ve built is a first word fall through FIFO

˝ That won’t work on an iCE40

– Because all block RAM reads on an iCE40 must be
registered

– The hardware doesn’t exist on an iCE40 to do otherwise

˝ This was our problem code

always @ (∗)
o_data <= fifo_mem [rd_addr] ;

How shall we fix this?

Fixing the read

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

51 / 61

Solution one: bypass the memory

˝ On a write, store the value in memory and in a register
˝ On the next clock, offer the register value as a result
˝ We’ll also need to adjust the read address

– The memory read address needs to be the address it will
be on the next clock

Let’s see what this would look like

Bypass memory

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

52 / 61

Our basic logic will be to capture two memory values, and select
between them

˝ The first is placed in a register

always @ (posedge i_clk)
bypass_data <= i_data ;

˝ The second is read from the memory

always @ (∗)
rd_next = rd_addr [LGFLEN ´1:0] + 1 ;

always @ (posedge i_clk)
rd_data <= mem [(w_rd)? rd_next

: rd_addr [LGFLEN ´ 1 : 0]] ;

Bypass memory

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

53 / 61

Our basic logic will be to capture two memory values, and select
between them

˝ The first is placed in a register
˝ The second is read from the memory
˝ Then we select between them

always @ (∗)
o_data = (bypass_valid) ? bypass_data

: rd_data ;

Bypass memory

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

54 / 61

The trick is the selector, bypass_valid, that tells us which value
to return

i n i t i a l bypass_valid = 0 ;
always @ (posedge i_clk)
begin

bypass_valid <= 1 ’b0 ;
i f (! i_wr)

// I f we haven ’ t w r i t t e n to the
// FIFO i n the l a s t c y c l e , the
// memory read w i l l be good
bypass_valid <= 1 ’b0 ;

// . . .
end

Bypass memory

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

55 / 61

The trick is the selector, bypass_valid, that tells us which value
to return

i n i t i a l bypass_valid = 0 ;
always @ (posedge i_clk)
begin

bypass_valid <= 1 ’b0 ;
i f (! i_wr)

bypass_valid <= 1 ’b0 ;
e l s e i f (o_empty | | (i_rd&&(o_fill == 1)))

// Othe rw i s e i f we read , and the
// memory i s now empty , use the
// r e g i s t e r v a l u e
bypass_valid <= 1 ’b1 ;

// Remember , the l a s t a s s i gnment wins
end

You can use formal methods to prove the result is the same

Fixing the read

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

56 / 61

Solution two: Work with the registered output

˝ We could just use the registered data

always @ (posedge i_clk)
o_data <= mem [(w_rd)? rd_next

: rd_addr [LGFLEN ´ 1 : 0]] ;

˝ The biggest problem would be our empty FIFO logic

– It would need to be delayed by one clock

i n i t i a l o_empty = 1 ;
always @ (posedge i_clk)
i f ((o_fill > 1) | | ((o_fill == 1)&&(!w_rd)))

o_empty <= 1 ’b0 ;
e l s e

o_empty <= 1 ’b1 ;

Exercise #1

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

57 / 61

Pick a solution to our memory problem and

˝ Formally verify it
˝ Prove that it still meets the two write/two read criteria of a

FIFO

Exercise #2

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

58 / 61

All of our o_fill and o_full logic is combinatorial

˝ This will prevent keep us from using our FIFO in a high speed
design

˝ Solution: Rewrite this logic so that it’s registered

always @ (posedge i_clk)
o_fill <= // Your l o g i c he r e

always @ (posedge i_clk)
o_full <= // Your l o g i c he r e

˝ Use the formal solver to formally prove that it still meets the
properties required of o_fill and o_full

Exercise

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

59 / 61

Are you ready? Let’s build this!

˝ Create this design, and place it on your FPGA
˝ You’ve already formally verified and simulated it, right?

– So . . . it should work on the hardware the first time, right?

(Guilty admission: Mine still didn’t work the first time . . .)

Questions

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Ź Fixing the read

Conclusion

60 / 61

˝ Many serial port implementations use RTS and CTS signals

– How might you use the FIFO level to stop an upstream
transmitter when the FIFO was (nearly) full? Don’t forget
these things don’t stop on a dime.

– How might a downstream receiver signal to this design to
stop transmitting, since its FIFO was (nearly) full?

˝ Most packet format end with a CRC

– How would you modify this design to add and check a
CRC?

˝ Many packet formats have either a fixed length, or a length
specifier

– How would a variable packet length change things?

Conclusion

Lesson Overview

Design Goal

What is a FIFO?

Basic FIFO Design

method

FIFO Interface

FIFO Memory

Addresses

Formal Verification

FIFO Verification

Cover

Cover Lesson

Line Capturer

Using the FIFO

Rx + FIFO

Verifying the FSM

Simulation

Random Delay

Sim Trace

Fixing the read

Ź Conclusion

61 / 61

What did we learn this lesson?

˝ What a FIFO is, and why you might use one
˝ How to formally verify a FIFO
˝ Some of the problems associated with reading the data from

a FIFO on different pieces of hardware
˝ How to eliminate combinatorial logic, while making sure that

the design functionality doesn’t change

	
	Lesson Overview
	Design Goal
	What is a FIFO?
	Basic FIFO Design
	FIFO Interface
	FIFO Memory
	Addresses
	Formal Verification
	FIFO Verification
	Cover
	Cover Lesson Learned
	Line Capturer
	Using the FIFO
	Rx + FIFO
	Verifying the FSM
	Simulation
	Random Delay
	Sim Trace
	Fixing the read
	Conclusion

