0. Transmitting
Data Words

GissequiSt Daniel E. Gisselquist, Ph.D.

Technology, LLC

—__JW._

(:1-|- Lesson Overview

= Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Debugging is one of the hardest parts of digital logic design

o You can't see what's happening inside the FPGA
o LED’s are one solution

— FPGA's operate 50MHz+
— Your eye operates at < 60Hz

o The serial port can be a second solution

Let's learn to send data through our serial port!
Objectives

o Transform Hello World into a debugging output

o Learn about formal abstraction

o Experiment with using ncurses with Verilator

o Extract internal design variables from within Verilator

2 / 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

-I Data Transmitter

Lesson Overview
Data
= Transmitter

Desired Structure

Counter

Change Detection

txdata
State diagram
Outgoing Data

Formal Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Let's transmit a word of data

N N N N N N N N N N

i_clk

1_stb

o_busy]

-

1_data

tx_stb l_/

tx_data I L

I

Each word will . ..

Start with 0x

O

o Contain the number sent, but in hexadecimal
this is much easier than doing decimal!
Four bits can be encoded at a time

o End with a carriage return / line-feed pair

3 / 54

-I Data Transmitter

Lesson Overview
Data
= Transmitter

Desired Structure

Counter

Change Detection

txdata
State diagram
Outgoing Data

Formal Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

You should know how to build this design already

N N N N N N N N N N N N N N

i_clk
i_stb
o_busy _]
i_data
tx_stb ._/

tx_data DO o [< Lo Lo Ln Lo o n [on Lo e [

-

mr

Remember how we've built state machines before
o In this case, you have two triggers

— One trigger, i_stb, starts the process
— A busy line from the serial port, tx_busy (not shown),
controls the movement from one character to the next

o This design will be the focus of this lesson

4 / 54

-I Data Transmitter

Lesson Overview
Data
= Transmitter

Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

You should know how to build this design already

i_clk
i_stb

1_data

N

4

N

4

N

4

N

4

N

4

N

4

N

4

N

4

N

4

N

4

N

o_busy | o_busy: unable to accept another word \
tx_stb l | tx_stb requests a char be transmitted \

tx_data o

X

h

h

h

h

h

h

h

h

\r

Remember how we've built state machines before

o In this case, you have two triggers

— One trigger, i_stb, starts the process
— A busy line from the serial port, tx_busy (not shown),
controls the movement from one character to the next

o This design will be the focus of this lesson

4 / 54

-I Desired Structure

Lesson Overview Our overall design will look like this:
Data Transmitter
Desired /ﬁ
= Structure (.)
Counter design.v
Change Detection T\ /T \
txdata ()
State diagram —‘)[counter.v] txdata.v
Outgoing Data ST\
Eormal Verification P]
over: txuart.v
Assertions chgdetector.v
Sequence L)
Sequence L J
Concurrent
Assertions . .
Simulation o Some event will trigger a counter
Vot o A second module will detect that the counter has changed
erilator data
Testbench build o Finally we'll output the result
Exercise #2 , .
i o We'll use txuart.v from the last exercise
Conclusion

Let's take a quick look at counter.v and chgdetector.v

5 / 54

-I Creating a Counter

Lesson Overview
Data Transmitter
Desired Structure
= Counter
Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

You should already know how to make an event counter

module counter(i_clk, i_event, o_counter);
input wire i_clk, i_event;
output reg [31:0] o_counter;
initial o_counter = O0;
always @(posedge i_clk)
if (i_event)
o_counter <= o_counter + 1'bl;
endmodule

Feel free to add a reset if you would like

6 / 54

(:1-|- Change Detection

Lesson Overview
Data Transmitter
Desired Structure

Counter
Change
= Detection

txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Detecting a change in the counter is also pretty easy

module chgdetector(i_clk, i_data,
o_stb, o_data, i_busy);
//

initial { o_stb, o_data } = O0;
always @(posedge i_clk)
if (!i_busy)

begin
stb <= 0;
if (o_data != i_data)
begin
stb <= 1'b1l;
o_data <= i_data;
end
end
endmodule

7 / 54

(:1-|- Change Detection

Lesson Overview
Data Transmitter
Desired Structure

Counter
Change
= Detection

txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Detecting a change in the counter is also pretty easy

module chgdetector(i_clk, i_data,
o_stb, o_data, i_busy);
//

initial { o_stb, o_data } = 0;
always @(posedge i_clk)

if (!i_busy)

begin

[| - n

fNothing is allowed to change if i_busy\
is true. That's the case where a request
has been made, but it has yet to be ac-

J

ce pted 3

end
endmodule

7 / 54

(:1-|- Change Detection

Lesson Overview
Data Transmitter
Desired Structure

Counter
Change
= Detection

txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Detecting a change in the counter is also pretty easy

module chgdetector(i_clk, i_data,
o_stb, o_data, i_busy);
//

initial { o_stb, o_data } = O0;
always @(posedge i_clk)
if (!i_busy)

begin
stb <= 0;
if (o_data != i_data)
begin

stb <= 1'b1l;
o_data <= i_data;

Otherwise, anytime the data changes, we set up

a request to transmit the new data.
endmodule

7 / 54

(:1-|- Change Detection

Lesson Overview
Data Transmitter
Desired Structure

Counter
Change
= Detection

txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What formal properties might we use here?

d

Any output value should remain unchanged until accepted

i

// Remember this property?
always @(posedge i_clk)
if ((f_past_valid)
&($past(o_stb))&&($past(i_busy)))
assert ((o_stb)&&($stable(o_data)));

Remember how this works? This says that ...

8 / 54

(:1-|- Change Detection

Lesson Overview
Data Transmitter
Desired Structure

Counter
Change
= Detection

txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What formal properties might we use here?

d

i

Any output value should remain unchanged until accepted

// Remember this property?
always @(posedge i_clk)
if ((f_past_valid)
&($past(o_stb))&&($past(i_busy)))
assert ((o_stb)&&($stable(o_data)));

Remember how this works? This says that ...

— If both o_stb and i_busy are true on the same clock cycle
(i.e., the interface is stalled)

— Then request should remain outstanding on the next cycle

— ...and the data should be the same on that next cycle

— $stable(o_data) is shorthand for o_data == $past(o_data)

8 / 54

(:1-|- Change Detection

Lesson Overview
Data Transmitter
Desired Structure

Counter
Change
= Detection

txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What formal properties might we use here?

o Any output value should remain unchanged until accepted

i

// Remember this property?
always @(posedge i_clk)
if ((f_past_valid)
&($past(o_stb))&&($past(i_busy)))
assert ((o_stb)&&($stable(o_data)));

o When o_stb rises, o_data should reflect the input

always @(posedge i_clk)
if ((f_past_valid)&&($rose(o_stb)))
assert(o_data = $past(i_data));

$rose(o_stb) is shorthand for (o_stb[0] && !$past(o_stb[0]))

9 / 54

(:1-|- Change Detection

i

Lesson Overview What formal properties might we use here?
Data Transmitter
Desired Structure o Any output value should remain unchanged until accepted
Counter

e e // Remember this property?
txdata always @(posedge i_clk)
Ztatte‘_“agsnt’ if ((f_past_valid)

utgoing Data .
Formal Verification &($pa5t (O—Stb))&&($paSt (l—busy)))
Cover assert ((o_stb)&&($stable(o_data)));
Assertions
Sequence) .
Seiueme o When o_stb rises, o_data should reflect the input
Concurrent
g_sserlti"_"s always @(posedge i_clk)

Imulation .
iren if ((f_past_valid)&&($rose(o_stb)))
Verilator data assert(o_data — $past(i_data));
Testbench build
Exercise #2 .
Exercise #3 $rose(o_stb) is shorthand for (o_stb[0] && !$past(o_stb[0]))
Conclusion o Can you think of any other properties we might need?

9 / 54

_I- Our focus: txdata

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
= txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

This lesson will focus on txdata.v

o We've already built txuart.v
o You should have no problems designing counter.v or
chgdetector.v

You are encouraged to do so on your own
— If not, you can find counter.v and chgdetector.v in
the course handouts

You should also have a good idea how to start on txdata.v.

o It's not all that different from txuart.v or helloworld.v
o The example in the course handouts is broken

10 / 54

_I- Our focus: txdata

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
= txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's the port list(s) we'll design to

module

//

txuart

txdata(i_clk, i_stb, i_data, o_busy,

o_uart_tx);

#(UART_SETUP [23:0]) txuarti(i_clk,

tx_stb, tx_data, o_uart_tx, tx_busy);

//

endmodule

11 / 54

(:1-|- Our focus: txdata

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
= txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's the port list(s) we'll design to

— e ———

rnoézf{i txdata(i_clk, i_stb, i_data, o_busy,

—

o_uart_tx);
//

txuart #(UART_SETUP[23:0]) txuarti(i_clk,
tx_stb, tx_data, o_uart_tx, tx_busy);

//

endmodule

If i_stb is true, we have a new value to send
i_data will then contain that 32-bit value
o_busy means we cannot accept data
o_uart_tx is the 1-bit serial port output

|

a

O

a

11 / 54

(:1-|- Our focus: txdata

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
= txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's the port list(s) we'll design to

module

//

txdata(i_clk, i_stb, i_data, o_busy,
o_uart_tx);

txuart #(U i_clk,
<:E§}stb, tx_data, o_uart_tx, tx_busy);

-) _txunarti
T

//

endmodule

o tx_stb requests data be transmitted

o tx_data is the 8-bit character to transmit

o tx_busy means the serial port transmitter is busy and cannot
accept data

12 / 54

(:1-|- State diagram

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

> State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can create a state diagram for this state machine too

IDLE tx_stb is low, state = 0 for idle
i_stb is true
N . tx_stb is high
el l for all these states
tx_data ="0" hex{data[15:12]}
{ !tx_busy v
tx_data = "x" hex{data[11:8]}

1 'tx_busy)
hex{data[31:28]} hex{data[7:4]}

v (etc.))
hex{data[27:24]1} hex{data[3:0]}
hex{data[23:201} tx_data = "\r"
hex{data[19:16]} tx_data = "\n"

13 / 54

-I- State diagram

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

> State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can create a state diagram for this state machine too

] IDLE tx_stb is low, state = 0 for idle
i_stb is true o
Lekier s vl 1 fort;(ﬁsttr?elsehs?:tes
tx_data ="0" hex{data[15:12]}
{ !tx_busy v
tx_data = "x" hex{data[11:8]}
1 'tx_busy)
hex{data[31:28]} hex{data[7:4]}
v (etc.))
hex{data[27:24]1} hex{data[3:0]}
) !

~

(. 1

We'll start sending our message upon request (i_stb is true),
and advance to the next character any time the transmitter is
not busy (tx_busy is false)
\.

13 / 54

-I- State diagram

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

> State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can create a state diagram for this state machine too

] IDLE tx_stb is low, state = 0 for idle
i_stb is true o
Lekier s vl 1 fort;(ﬁsttr?elsehs?:tes
tx_data ="0" hex{data[15:12]}
{ !tx_busy v
tx_data = "x" hex{data[11:8]}
1 'tx_busy)
hex{data[31:28]} hex{data[7:4]}
v (etc.))
hex{data[27:24]1} hex{data[3:0]}
) v

knibbles to hexadecimal before outputting them

(. . . . \
In this chart, data is the 32-bit word we are sending, and hex{}
just references the fact that we need to convert the various

13 / 54

-I- State diagram

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

> State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can create a state diagram for this state machine too

—>
IDLE tx_stb is low, state = 0 for idle
i_stb is true
P : : tx_stb is high
Lokt 5 vele l for all these states
tx_data ="0" hex{data[15:12]}
{ !tx_busy v
tx_data = "x" hex{data[11:8]}
1 'tx_busy)
hex{data[31:28]} hex{data[7:4]}
v (etc.))
hex{data[27:24]1} hex{data[3:0]}

Remember, input data such as i_data are only valid as Iong\
as the incoming request is valid (i_stb is high). We'll need
to make a copy of that data once the request is made,

\(i_stb) && (lo_busy), and then work off of that copy.)

13 / 54

(:1-|- State diagram

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

> State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can even annotate this with state ID numbers

tx_stb is low, state = 0 for idle

>
<

tx_stb is high
for all these states

— o e U e b e Wl N [

«— © [o | ~ [«

11

12

14 / 54

(:1-|- State diagram

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

> State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

The state machine should remind you of helloworld.v

always @(posedge i_clk)
if (!o_busy)
begin
if (i_stb)
begin
state <= 1;
tx_stb <= 1;
end // else state already — 0
end else if ((tx_stb)&&(!tx_busy))
begin
state <= state + 1;
if (state >= 4'hd)
begin
tx_stb <= 1'b0;
state <= 0;

//

15 / 54

(:1-|- Outgoing Data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram

> Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

The outgoing data is just a shift register

initial sreg = 0;

always @(posedge i_clk)

if (lo_busy) // && (i_stb)
sreg <= 1i_data;

else if ((!tx_busy)&&(state > 4'hl))
// Hold constant until read
sreg <= { i_data[27:0], 4'hO0};

Question:

Why aren’t we conditioning our load on i_stb as well?

16 / 54

(:1-|- Outgoing Data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram

> Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Converting to hex is very straight forward

i

always @(posedge i_clk)
case(sreg[31:28])

4'h0: hex
4'h1: hex
4'h2: hex
4'h3: hex
/).
4'h9: hex
4'ha: hex
4'hb: hex
4'hc: hex
4'hd: hex
4'he: hex
4'hf: hex
default:
endcase

<= "0";
<= "1";
<= "2";
<= "3";
<= "9";
<= "a";
<= "b";
<= "c";
<= "d";
<= "e";
<= "f";
begin en

17 / 54

(:1_|- Outgoing Data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram

> Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Converting to hex is very straight forward

i

always @(posedge i_clk)
case(sreg[31:28])

4'h0: hex
4'h1: hex
4'h2: hex
4'h3: hex
/).
4'h9: hex
4'ha: hex
4'hb: hex
4'hc: hex
4'hd: hex
4'he: hex
4'hf: hex
default:
endcase

<= "0"; // Values in quotation
<= "1"; // marks specify literal
<= "2", // 8bit values with an
<= "3"; // ASCIl encoding

<= "9";

<= "a";

<= "b";

<= "c";

<= "d";

<= "e';

<= "f";

begin en

18 / 54

(:1-|- Outgoing Data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram

> Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Converting to hex is very straight forward

Ui

always @(posedge i_clk)

case(sreg

4'h0: hex
4'h1: hex
4'h2: hex
4'h3: hex
/).
4'h9: hex
4'ha: hex
4'hb: hex
4'hc: hex
4'hd: hex
4'he: hex
4'hf: hex
default:
endcase

[31:28])
<= "0";
<="1";
<= "2";
<= "3";
<= "9";
<= "a";
<= "b";
<= "c";
<= "d";
<= "e";
<= "f";
begin end

//
//
//
//

//
//
//
//
//

//

Values in quotation
marks specify literal
8—bit values with an

ASCIl encoding

Strings work similarly
with the only difference
being that string
literals may be much
longer than 8—bits

Example: A<= "1234";

19 / 54

Gl

Outgoing Data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram

> Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Put together, here's our code to transmit a byte

i

always @(posedge i_clk)
case(state)
if (!tx_busy)
case(state)
4'h1: tx_data <= "0";
4'h2: tx_data <= "x
4'h3: tx_data <= hex
4'h4: tx_data <= hex
/)
4'h9: tx_data <= hex;
4 "'ha: tx_data <= hex;
4'hb: tx_data <= "\r"
4'hc: tx_data <= "\n"
default: tx_data <="
endcase

// These are the
// values we' [l

// want to output

// at each state

. // Carriage return

// Line—feed

Q"; // A bad value

20 / 54

-I Simulation

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram

> Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Let’'s do simulation after formal verification

O

O

O

It's easier to get a trace from formal
Formal methods are often done faster
etc.

21 / 54

-I- Formal Verification

Lescern Gvariar Our design is getting large

Data Transmitter ’ .

Desired Structure o We've already verified txuart.v
Counter

o It would be nice not to have to do it again

Change Detection
txdata

State diagram Let's simplify things instead!
Outgoing Data

Formal o Let's replace txuart.v with something that ...

= Verification

Cover — Might or might not act like txuart.v
Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

22 / 54

-I- Formal Verification

Lescern Gvariar Our design is getting large

Data Transmitter ’ .

Desired Structure o We've already verified txuart.v
Counter

o It would be nice not to have to do it again

Change Detection
txdata

State diagram Let's simplify things instead!
Outgoing Data

Formal o Let's replace txuart.v with something that ...

= Verification
Cover — Might or might not act like txuart.v

Assertions . . .
— ...at the solver’s discretion

Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

22 / 54

-I- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Our design is getting large

o We've already verified txuart.v
o It would be nice not to have to do it again

Let's simplify things instead!

o Let's replace txuart.v with something that ...

This

Might or might not act like txuart.v
... at the solver’s discretion
Acting like txuart.v must remain a possibility

Is called abstraction

22 / 54

(:1-|- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's how we'll do it:

‘ifndef FORMAL
txuart #(UART_SETUP[23:0]) txuarti(i_clk,
tx_stb, tx_data, o_uart_tx, tx_busy);

‘else
(x anyseq %) wire serial_busy, serial_out;
assign o_uart_tx = serial_out;
assign tx_busy = serial_busy;

o (% anyseq *) allows the solver to pick the values of

serial_busy and serial_out

o (% anyseq %) values can change from one clock to the next
o They might match what txuart would've done

23 / 54

(:1-|- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's how we'll do it:

‘ifndef FORMAL
txuart #(UART_SETUP[23:0]) txuarti(i_clk,
tx_stb, tx_data, o_uart_tx, tx_busy);

‘else
(x anyseq %) wire serial_busy, serial_out;
assign o_uart_tx = serial_out;
assign tx_busy = serial_busy;

o (% anyseq *) allows the solver to pick the values of

serial_busy and serial_out

o (% anyseq %) values can change from one clock to the next
o They might match what txuart would've done, or they

might not

23 / 54

(:1-|- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's how we'll do it:

‘ifndef FORMAL
txuart #(UART_SETUP[23:0]) txuarti(i_clk,
tx_stb, tx_data, o_uart_tx, tx_busy);

‘else
(x anyseq %) wire serial_busy, serial_out;
assign o_uart_tx = serial_out;
assign tx_busy = serial_busy;

o (% anyseq *) allows the solver to pick the values of

serial_busy and serial_out

o (% anyseq %) values can change from one clock to the next
o They might match what txuart would've done, or they

might not

o |f our design passes in spite of what this abstract txuart does

23 / 54

(:1-|- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Here's how we'll do it:

‘ifndef FORMAL
txuart #(UART_SETUP[23:0]) txuarti(i_clk,
tx_stb, tx_data, o_uart_tx, tx_busy);

‘else
(x anyseq %) wire serial_busy, serial_out;
assign o_uart_tx = serial_out;
assign tx_busy = serial_busy;

o (% anyseq *) allows the solver to pick the values of

serial_busy and serial_out

o (% anyseq %) values can change from one clock to the next
o They might match what txuart would've done, or they

might not

o If our design passes in spite of what this abstract txuart does,

then it will pass if txuart acts like it should

23 / 54

(:1-|- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We'll insist that our abstract UART is busy following any request

reg [1:0] f_minbusy;

initial f_minbusy = O0;

always @(posedge i_clk)

if ((tx_stb)&&(!tx_busy))
f_minbusy <= 2'b01;

else if (f_minbusy != 2'b00)
f_minbusy <= f_minbusy + 1 bil;

We can use f_minbusy to force any transmit request to take at
least four cycles before dropping the busy line

o f_minbusy is just a 2-bit counter
o After passing 3, it waits at zero for the next byte

24 / 54

(:1-|- Formal Verification

Lesson Overview We'll insist that our abstract UART is busy following any request
Data Transmitter
Desired Structure reg [1: O] f_minbusy ,
Counter
Change Detection . .
txdata initial f_minbusy = O0;
State diagram always @(posedge i_clk)
Outgoing Data .
Forrmal if ((tx_stb)&&(!tx_busy))
= Verification f_minbusy <= 2 'bO]_ :
Cover . . ’
Accertions else if (f_minbusy != 2'b00)
Sequence f_minbusy <= f_minbusy + 1 bil;
Sequence
Concurrent
Assertions alwayS @(*)
Simulation if (f_minbusy != 0)
ncurses
Verilator data assume (tX_b'LlSY) :
Testbench build
E i
oo zi Since (x anyseq x) values act like inputs to our design,
Conclusion constraining them by an assumption is appropriate

25 / 54

(:1-|- Formal Verification

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data

Formal
= Verification

Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We'll also insist it doesn't become busy on its own

initial assume(!tx_busy); // Starts idle
always @(posedge i_clk)
if ($past(i_reset)) // Becomes idle after reset
assume (! tx_busy);
else if (($past(tx_stb))&&(!$past(tx_busy)))
// Must become busy after a new request
assume (tx_busy);
else if (!$past(tx_busy))
// Otherwise, it cannot become busy
// without a request
assume (! tx_busy);

Now we can build a proof without re-verifying txuart.v!

26 / 54

-I- Cover

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
= Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Let's see if this design works:

// Don’t forget to set the mode to cover
// in your SBY filel
always @(posedge i_clk)
if (f_past_valid)
cover($fell (o_busy));

This would yield a trace with a reset

o It works, but it's not very informative

27 / 54

Gl cover

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
= Cover
Assertions
Sequence
Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What if we except the reset?

// Don’t forget to set the mode to cover

// in your SBY filel

always @(posedge i_clk)

if ((f_past_valid)&&(!$past(i_reset)))
cover($fell (o_busy));

We can now get a useful trace

o The trace starts with a request
o Works through the whole sequence
o Stops when the state machine is ready to start again

28 / 54

Gl cover

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
= Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What if we look for 0x12345678\r\n?

i

reg f_seen_data;
initial f_seen_data = 0;
always @(posedge i_clk)
if (i_reset)
f _seen_data <= 1'b0;
if ((i_stb)&&('o_busy)
&&(i_data = 32'h12345678))
f_seen_data <= 1'b1;

else

always @(posedge i_clk)
if ((f_past_valid)&&(!'$past(i_reset))
&&(f_seen_data))
cover($fell (o_busy));

Check out the trace.

29 / 54

Gl cover

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
= Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What if we look for 0x12345678\r\n?

i

reg f_seen_data;
initial f_seen_data = 0;
always @(posedge i_clk)
if (i_reset)
f _seen_data <= 1'b0;
if ((i_stb)&&('o_busy)
&&(i_data = 32'h12345678))
f_seen_data <= 1'b1;

else

always @(posedge i_clk)
if ((f_past_valid)&&(!'$past(i_reset))
&&(f_seen_data))
cover($fell (o_busy));

Check out the trace. Does your design work?

29 / 54

Gl cover

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
= Cover
Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

What if we look for 0x12345678\r\n?

i

reg f_seen_data;
initial f_seen_data = 0;
always @(posedge i_clk)
if (i_reset)
f _seen_data <= 1'b0;
else if ((i_stb)&&('o_busy)
&&(i_data = 32'h12345678))
f_seen_data <= 1'b1;

Caution: It's a snare to use something like f_seen_data outside

of a cover context

o We aren't doing directed simulation

o The great power of formal is that it applies to all inputs

o We're just picking an interesting input for a trace

30 / 54

-I Assertions

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

= Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Now, what assertions would be appropriate?

o We can assert state is legal

o That tx_stb |= (state == 0)

o Can we assert that the first data output isa "0"7?
o That the second outputisa "1"7

Your turn: what would make the most sense here?

31 / 54

(:1-|- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions

= Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Yes, we can assert a sequence takes place!

i

reg [12:0] f_plreg; // Property s—reg
initial f_plreg = O0;
always @(posedge i_clk)
if (i_reset)
f_plreg <= O0;

else if ((i_stb)&&(!'o_busy))
begin
f_plreg <= 1;
assert(f_plreg =— 0);
end else if (!tx_busy)

f_plreg <= { f_plreg[l11:0], 1'b0 };

f_pireg[x] will now be true for stage x of any output sequence

32 / 54

_I- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

> Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

But what is f_plreg? It's a shift register

f_pireglo] [\

I_stb

obusy ____ |

tx_stb B\

REr

tx_data I 0 o) o

f_plregll]

f_plreg[2 [)

f_plreg|3] [

f_plregl[4] [

o f_plreg[x] is true anytime we are in stage x of our sequence
o We can use this when constructing formal properties

33 / 54

(:1-|- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

> Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Using f_plreg[x] we can make assertions about the different
states in our sequence

always @(posedge i_clk)

if (('tx_busy)||(f_minbusy = 0))

begin
// |If the serial port is ready for
// the next character, or while we are
// waiting for the next character,

if (f_plreg|0])

assert ((tx_data = "0")
&&(state =— 1));

if (f_plreg|l])
assert ((tx_data = "x")
&&(state = 2));

// etc.

end

34 / 54

_I- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

> Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Why use a shift register for f_pireg[x]?

o A counter would also work for this sequence
o A shift register is more general and powerful

— A shift register can represent states in a sequence that
might overlap itself

— Perhaps such a sequence may be entered on every clock
cycle

— An example would be a peripheral that always responds to
any request in IV cycles, yet never stalls

f_plireg[x] allows us to represent general sequence states

35 / 54

GI Concurrent Assertions

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
= Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Full System Verilog support would make this easier

sequence SEND(A,B);
(tx_stb)&&(state =— A)&&(tx_data —
throughout
(tx_busy) [*0:$] ##1 (!tx_busy)
endsequence

B)

This defines a sequence where

o (tx_stb)&&... must be true
o while tx_busy is true, and then
o until (and including) the clock where tx_busy is false

36 / 54

(:1-|- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
= Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

i

Full System Verilog support would make this easier

//

sequence SEND(A,B);

We could then string such sequences together in a property that
could be asserted

assert property (@(posedge i_clk))
disable iff (i_reset)
(i_stb)&&(!o_busy)
|I=> SEND(1, "0") // First state
##1 SEND(2, "x") // Second, etc

72

o A |=> B means if A, then B is asserted true on the next clock
o ##1 here means one clock later

37 / 54

(:1-|- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
= Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

i

Full System Verilog support would make this easier

//

sequence SEND(A,B);

We could then string such sequences together in a property that
could be asserted

assert property (@(posedge i_clk))
disable iff (i_reset)
(i_stb)&&(!o_busy)
|I=> SEND(1, "0") // First state
##1 SEND(2, "x") // Second, etc

72

SymbiYosys support for sequences requires a license

38 / 54

(:1-|- Sequence

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
= Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

i

Full System Verilog support would make this easier

//

sequence SEND(A,B);

We could then string such sequences together in a property that
could be asserted

assert property (@(posedge i_clk))
disable iff (i_reset)
(i_stb)&&(!o_busy)
|I=> SEND(1, "0") // First state
##1 SEND(2, "x") // Second, etc

72

SymbiYosys support for sequences requires a license

o f_plreg let's us do roughly the same thing

38 / 54

-I- Exercise #1

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
= Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Your turn!

Take a moment now to ...

o Create your txdata.v, or
o Download my broken one, and then
o Formally verify it

— Add such assertions as you deem fit
— Make sure you get a trace showing it working

Does your design work?

39 / 54

-I Simulation

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

= Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

| et’'s move on to simulation

o Let's use the simulator to count key presses
o ncurses + Verilator offers a quick debugging environment

— Every time a key is pressed, output a new count value
— WEe'll use getch() to get key presses immediately

You may need to download and install ncurses-dev

— We'll adjust uartsim() to print to the screen

o You can also examine internal register values with Verilator

— While the design is running

Let's look at how we'd do these things

40 / 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

GI ncurses

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation

= ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

ncurses is an old-fashioned text library

o It allows us easy access to key press information

o We can write to various locations of the screen

o etc.

o The original ZipCPU debugger was written with ncurses

We'll only scratch the surface here

41 / 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
http://zipcpu.com/zipcpu/2017/07/26/cpu-sim-debugger.html

GI ncurses

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation

= ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Starting ncurses requires some boilerplate

#include <ncurses>

//

int main(Cint argc, char x*xargv) {
/S
initscr ();
raw () ;

noecho () ;
keypad (stdscr , true);
halfdelay (1) ;

o This initializes the curses environment

o Turns off line handling and echo

o Decodes special keys (like escape) for us

o halfdelay (1) — Doesn't wait for keypresses

42 / 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

GI ncurses

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation

= ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Our inner loop will start by checking for keypresses

do <

done = false;

tb->m_core->i_event = 0;

// Ket a keypress

chv = getch ();

if (chv == KEY_ESCAPE)
// Exit om escape
done = true;

else if (chv !'= ERR)
// Key was pressed
tb->m_core->i_event =

tb->tick () ;

1;

(xuart) (tb->m_core->o0_uart_tx);
} while (!done) ;

43 / 54

GI ncurses

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation

= ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can speed this up too:

do {
// ...
for (int k=0; k<1000; k++) {
tb->tick ();

(xuart) (tb->m_core->0_uart_tx);

tb->m_core->i_event = 0;

+
} while (!done);

o getch() waits 1/10"" of a second for a keypress
— This is because we called halfdelay (1) ;

o This will run 1000 simulation ticks per getch() call

44 | 54

GI ncurses

Lo Ot We can also count given keypresses
Data Transmitter
Desired Structure dO {

Counter

Change Detection // ’ _ ’

- for(int k=0; k<1000; k++) {

State diagram tb_>tick () c

Outgoing Data)
o] e Tt (xuart) (tb->m_core->o0_uart _tx);
Cover keypresses

pssertions += tb->m_core->i_event;
Sequence .

G tb->m_core->i_event = 0;

Concurrent }
Assertions

Simulation } While (! dO"E) >

= ncurses

Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We'll print this number out before we are done

45 / 54

GI ncurses

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation

= ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We'll also need to replace the putchar() in uartsim.cpp

o ncurses requires we use addch ()
// t1f character recetved
if (m_rx_data '= ’\r’)
addch(m_rx_data) ;
o No flush is necessary, getch() handles that
o ’\r’ would clear our line, so we keep from printing it

46 | 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

GI ncurses

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation

= ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

endwin () ends the ncurses environment

endwin () ;

printf ("\n\nSimulation completel\n");
printf ("%4d_ key_,presses_ sent\n", keypresses);

This is nice, but

o wouldn't you also like a summary of keypresses the design
counted?

47 / 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

-I Verilator data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses

= Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

Verilator maintains your entire design in a C4++ object

o With a little work, we can find our variables
o A quick grep through Vthedesign.h reveals ...
o v__DOT__counterv contains our counter's value

— | use an older version of Verilator
— Modern versions place this in thedesign__DOT __counterv
— Supporting both requires a little work

o You can often find other values like this

— Grep on your variables name

— Be aware, Verilator will pick which of many names to give
a value

— Output wires may go by the name of their parent’s value

48 / 54

(:1-|- Verilator data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses

= Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

This little adjustment will allow us to simplify the reference to

our counter

#ifdef OLD_VERILATOR

#define VVAR(X) v__DOT_ ## A

#Helse

#define VVAR(X) thedesign__DOT_ ##A
#endif

#define counterv VVAR(_counterv)

o If OLD_VERILATOR is defined (my old version)
— counterv evaluates to v_._DOT__counterv
o Otherwise counterv is replaced by

— thedesign__DOT__counterv

49 / 54

G-I- Verilator data

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses

= Verilator data
Testbench build
Exercise #2
Exercise #3
Conclusion

We can now output our current counter

endwin () ;

printf ("\n\nSimulation, complete\n");
printf ("/4d key_presses_ sent\n",
keypresses) ;

printf ("/4d_ key_ presses_ registered\n",

tb->m_core->counterv) ;

50 / 54

Gl

Testbench build

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses

Verilator data

= Testbench build

Exercise #2
Exercise #3
Conclusion

Two changes are required to our build script

o If you want to define NEW_VERILATOR or
OLD_VERILATOR ...

— You'll need to do some processing on Verilator's version

— The vversion. sh file does this, returning either
-DOLD_VERILATOR or -DNEW_VERILATOR

— We can use this output in our g++ command line

— Alternatively, you can just adjust the file for your version

o We need to reference —1ncurses in our Makefile when
building our executable

51 / 54

-I- Exercise #2

Lesson Overview YOU r turn I

Data Transmitter
Desired Structure
Counter

Change Detection -
txdata 0
State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
= Exercise #2
Exercise #3
Conclusion

Build and experiment with the simulation

Using your txdata.v
main() is found in thedesign tb.cpp in the handouts
Experiment with . ..

— Adjusting the number of tb->tick () calls between calls to
getch ()

— Does this speed up or slow down your design?

— Are all of your keypresses recognized?

— What happens when you press the key while the design is
busy?

52 / 54

-I- Exercise #3

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2

= Exercise #3
Conclusion

Only now is it time to test this in hardware

o You'll need to test for button changes

always @(posedge i_clk)
last_btn <= i_btn;

assign w_event = (i_btn)&&(!'last_btn);

o Does it work?

— Does it count once per keypress?
— Does the counter look reasonable?

My implementation experienced several anomalies.

o We'll discuss those in the next lesson

53 / 54

-I Conclusion

Lesson Overview
Data Transmitter
Desired Structure
Counter

Change Detection
txdata

State diagram
Outgoing Data
Formal Verification
Cover

Assertions
Sequence

Sequence

Concurrent
Assertions

Simulation
ncurses
Verilator data
Testbench build
Exercise #2
Exercise #3
= Conclusion

What did we learn this lesson?

o How to formally verify a part of a design, and not just the
leaf modules

o Creating interesting traces with cover

o Subtle timing differences can be annoying

o How to use Verilator with ncurses

o Extracting an internal design value from within a Verilator
simulation

We learned how to get information back out from within the
hardware

o We'll discuss the hazards of asynchronous inputs more in the
next lesson

54 / 54

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

	
	Lesson Overview
	Data Transmitter
	Desired Structure
	Creating a Counter
	Change Detection
	Our focus: txdata
	State diagram
	Outgoing Data
	Formal Verification
	Cover
	Assertions
	Sequence
	Sequence
	Concurrent Assertions
	Simulation
	ncurses
	Verilator data
	Testbench build
	Exercise #2
	Exercise #3
	Conclusion

