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˝ What is a Finite State Machine?
˝ Why do I need it?
˝ How do I build one?

Objectives

˝ Learn the concatenation operator
˝ Be able to explain a shift register
˝ To get basic understanding of Finite State Machines
˝ To learn how to build and use Finite State Machines
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The concatenation operator

always @ ( posedge i_clk )
o_led <= { o_led [ 6 : 0 ] , o_led [ 7 ] } ;

Composes a new bit-vector from other pieces
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The concatenation operator

always @ ( posedge i_clk )
o_led <= { o_led [ 6 : 0 ] , o_led [ 7 ] } ;

Simplifies what otherwise would be quite painful

always @ ( posedge i_clk )
begin

o_led [ 0 ] <= o_led [ 7 ] ;
o_led [ 1 ] <= o_led [ 0 ] ;
o_led [ 2 ] <= o_led [ 1 ] ;
o_led [ 3 ] <= o_led [ 2 ] ;
o_led [ 4 ] <= o_led [ 3 ] ;
o_led [ 5 ] <= o_led [ 4 ] ;
o_led [ 6 ] <= o_led [ 5 ] ;
o_led [ 7 ] <= o_led [ 6 ] ;

end
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A shift register shifts bits through a register

˝ Can shift from LSB to MSB

always @ ( posedge i_clk )
o_led <= { o_led [ 6 : 0 ] , i_input } ;

˝ or from MSB to LSB

always @ ( posedge i_clk )
o_led <= { i_input , o_led [ 7 : 1 ] } ;



Shift Register

Lesson Overview

Ź Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

6 / 51

You can use this to create a neat LED display as well

˝ You just need to mix the shift register

i n i t i a l o_led = 8 ’h1 ;
always @ ( posedge i_clk )
i f ( stb )

o_led <= { o_led [ 6 : 0 ] , o_led [ 7 ] } ;

˝ With a counter to slow it down

reg [ 2 6 : 0 ] counter ;
reg stb ;
i n i t i a l { stb , counter } = 0 ;
always @ ( posedge i_clk )

{ stb , counter } <= counter + 1 ’b1 ;

˝ stb here is a strobe signal. A strobe signal is true for one
clock only, whenever an event takes place
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You can use this to create a neat LED display as well

˝ You just need to mix the shift register

i n i t i a l o_led = 8 ’h1 ;
always @ ( posedge i_clk )
i f ( stb )

o_led <= { o_led [ 6 : 0 ] , o_led [ 7 ] } ;

˝ With a counter to slow it down

reg [ 2 6 : 0 ] counter ;
reg stb ;
i n i t i a l { stb , counter } = 0 ;
always @ ( posedge i_clk )

{ stb , counter } <= counter + 1 ’b1 ;

˝ Note that you can assign to a concatenation as well
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If you’ve never seen Wavedrom, it is an awesome tool!
Here’s a waveform description of our shift register

i n i t i a l o_led = 8 ’h1 ;
always @ ( posedge i_clk )

o_led <= { o_led [ 6 : 0 ] , o_led [ 7 ] } ;

What would it take to make the LED’s go back and forth?

http://wavedrom.com
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Let’s build an LED walker!

˝ Active LED should walk across valid LED’s and back

We’ll assume 8 LEDs
Shift registers don’t naturally go both ways

˝ Only one LED should be active at any time
˝ One LED should always be active at any given time

Most of this project can be done in simulation
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Here’s a waveform description of what I want this design to do

˝ This “goal” diagram can help mitigate complexity
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Tikz-timing also works nicely for LATEX users

i clk

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

o led[6]

o led[7]

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave

https://ctan.org/pkg/tikz-timing
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Were we building in C, this would be our program

wh i l e (1) {

o l ed = 0x01;

o l ed = 0x02;

o l ed = 0x04;

// ...

o l ed = 0x80;

o l ed = 0x40;

// ...

o l ed = 0x04;

o l ed = 0x02;

}

How do we turn this code into Verilog?
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We could use a giant cascaded if statement

always @ ( posedge i_clk )
i f ( o_led == 8 ’ b0000_0001 )

o_led <= 8 ’ h02 ;
e l s e i f ( o_led == 8 ’ b0000_0010 )

o_led <= 8 ’ h04 ;
e l s e i f ( o_led == 8 ’ b0000_0100 )

o_led <= 8 ’ h08 ;
e l s e i f ( o_led == 8 ’ b0000_1000 )

o_led <= 8 ’ h08 ;
// . . .
// Don ’ t f o r g e t a f i n a l e l s e !
e l s e // i f ( o l e d == 8 ’ b0000 0010 )

o_led <= 8 ’ h01
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We could use a giant case statement

always @ ( posedge i_clk )
case ( o_led )
8 ’ b0000_0001 : o_led <= 8 ’ h02 ;
8 ’ b0000_0010 : o_led <= 8 ’ h04 ;
// . . .
8 ’ b0010_0000 : o_led <= 8 ’ h40 ;
8 ’ b0100_0000 : o_led <= 8 ’ h80 ;
8 ’ b1000_0000 : o_led <= 8 ’ h40 ;
// . . .
8 ’ b0000_0100 : o_led <= 8 ’ h02 ;
8 ’ b0000_0010 : o_led <= 8 ’ h01 ;
de fau l t : o_led <= 8 ’ h01 ;
endcase

Can anyone see a problem with these two approaches?
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A better way: Let’s assign an index to each of these outputs

// . . . u s i n g C++ no t a t i o n aga i n
o_led = 0x01 ; // 1
o_led = 0x02 ; // 2
o_led = 0x04 ; // 3
// . . .
o_led = 0x80 ; // 8
o_led = 0x40 ; // 9
// . . .
o_led = 0x04 ; // 13
o_led = 0x02 ; // 14

In software, you might think of this as an instruction address
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Here’s what an updated waveform diagram might look like

i clk

state 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

o led[6]

o led[7]

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave
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We can now set the result based upon the instruction address

always @ ( posedge i_clk )
case ( led_index )
4 ’h0 : o_led <= 8 ’ h01 ;
4 ’h1 : o_led <= 8 ’ h02 ;
4 ’h2 : o_led <= 8 ’ h04 ;
// . . .
4 ’h7 : o_led <= 8 ’ h80 ;
4 ’h8 : o_led <= 8 ’ h40 ;
// . . .
4 ’hc : o_led <= 8 ’ h02 ;
4 ’hd : o_led <= 8 ’ h01 ;
de fau l t : o_led <= 8 ’ h01 ;
endcase

˝ This is an example of a finite state machine
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All we need now is something to drive the instruction address

˝ This is known as the state of our finite state machine

i n i t i a l led_index = 0 ; // Our ” s t a t e ” v a r i a b l e
always @ ( posedge i_clk )
i f ( led_index >= 4 ’ d13 )

led_index <= 0 ;
e l s e

led_index <= led_index + 1 ’b1 ;
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Go ahead and simulate this design

˝ Does it work as intended?
˝ Did we miss anything?
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A finite state machine consists of. . .

˝ Inputs
˝ State Variable,

Finite means there are a limited number of states

˝ Outputs
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A finite state machine consists of. . .

˝ Inputs // we didn’t have any

˝ State Variable, // led index , or addr

Finite means there are a limited number of states

˝ Outputs // o led

Keep it just that simple.
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˝ State machines are conceptually very simple
˝ We’ll ignore the excess math here

Two classical FSM forms

˝ Mealy
˝ Moore

Two implementation approaches

˝ One process
˝ Two process
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Outputs depend upon the current state plus inputs

always @ (∗ )
i f ( ! i_display_enable )

o_led = 0 ;
e l s e

case ( led_index )
4 ’h1 : o_led = 8 ’ h01 ;
4 ’h2 : o_led = 8 ’ h02 ;
4 ’h3 : o_led = 8 ’ h04 ;
4 ’h4 : o_led = 8 ’ h08 ;
// . . .
endcase
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Outputs depend upon the current state only

// Update the s t a t e
always @ ( posedge i_clk )

enabled <= i_display_enable ;
// Crea te the ou tpu t s
always @ (∗ )
i f ( ! enabled )

o_led = 0 ;
e l s e

case ( led_index )
4 ’h1 : o_led = 8 ’ h01 ;
4 ’h2 : o_led = 8 ’ h02 ;
// . . .
endcase

The inputs are then used to determine the next state
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A one process state machine

˝ Created with synchronous always block(s)

i n i t i a l led_index = 0 ; // Our ” s t a t e ” v a r i a b l e
always @ ( posedge i_clk )
begin

i f ( led_index >= 4 ’he )
led_index <= 0 ;

e l s e

led_index <= led_index + 1 ’b1 ;

case ( led_index )
4 ’h0 : o_led <= 8 ’ h01 ;
// . . .
endcase

end
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Two Process FSM uses both synchronous and combinatorial logic

always @ (∗ )
begin

i f ( led_index >= 4 ’he )
next_led_index = 0 ;

e l s e

next_led_index

= next_led_index + 1 ’b1 ;
case ( led_index )
4 ’h0 : o_led = 8 ’ h01 ;
// . . .
endcase

end

always @ ( posedge i_clk )
led_index <= next_led_index ;
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Pick whichever finite state machine form . . .

˝ . . . you are most comfortable with

There is no right answer here



Which to use?

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Ź Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

26 / 51

Pick whichever finite state machine form . . .

˝ . . . you are most comfortable with

There is no right answer here

but people still argue about it!
˝ Tastes great
˝ Less Filling

I tend to use one process FSM’s
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Formal Verification is a process to prove your design “works”

˝ Fairly easy to use
˝ Can be faster and easier than simulation
˝ Most valuable

– Early in the design process
– For design components, and not entire designs
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Formal Verification

˝ You specify properties your design must have
˝ A solver attempts to prove if your design has them
˝ If the solver fails

– It will tell you what property failed
By line number

– It will generate a trace showing the failure

˝ These traces tend to be much shorter than simulation failure
traces
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The free version of Yosys supports immediate assertions

Two types
˝ Clocked – only checked on clock edges

// Remember how we on l y
// used some o f the s t a t e s ?
always @ ( posedge i_clk )

as se r t ( led_state <= 4 ’ d13 ) ;

˝ Combinational – always checked

always @ (∗ )
as se r t ( led_state <= 4 ’ d13 ) ;
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To verify this design using SymbiYosys,

˝ You’ll need a script

[ opt ions ]
mode prove

[ engines ]
smtbmc

[ s c r i p t ]
read ´formal ledwalker . v
# . . . o t h e r f i l e s would go he r e
prep ´top ledwalker

[ f i l e s ]
# L i s t a l l f i l e s and r e l a t i v e paths he r e
ledwalker . v
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1. BMC (Bounded Model Checking)

[ opt ions ]
mode bmc

depth 20

˝ Examines the first N steps (20 in this case)
˝ . . . looking for a way to break your assertion(s)
˝ Can find property (i.e. assert) failures
˝ An assert is a safety property

– Succeeds only if no trace can be found that makes
any one of your assertions fail
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1. BMC (Bounded Model Checking)
2. Cover

[ opt ions ]
mode cover

depth 20

˝ Examines the first N steps (20 in this case)
˝ . . . looking for a way to make any cover statement pass

always @ ( posedge i_clk )
cover ( led_state == 4 ’he ) ;

˝ No trace will be generated if no way is found
˝ cover is a liveness property

Succeeds if one trace, any trace, can be found to
make the statement true
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1. BMC (Bounded Model Checking)
2. Cover
3. Full proof using k-induction

[ opt ions ]
mode prove

depth 20

˝ Examines the first N steps (20 in this case)
˝ Also examines an arbitrary N steps

starting in an arbitrary state

The induction step will ignore your initial statements
Correct functionality must be guaranteed using assert

statements

˝ Can prove your properties hold for all time
˝ This is also a safety property check
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Assert the design can only contain one of eight outputs

always @ (∗ )
begin

f_valid_output = 0 ;
case ( o_led )
8 ’ h01 : f_valid_output = 1 ’b1 ;
8 ’ h02 : f_valid_output = 1 ’b1 ;
8 ’ h04 : f_valid_output = 1 ’b1 ;
8 ’ h08 : f_valid_output = 1 ’b1 ;
8 ’ h10 : f_valid_output = 1 ’b1 ;
8 ’ h20 : f_valid_output = 1 ’b1 ;
8 ’ h40 : f_valid_output = 1 ’b1 ;
8 ’ h80 : f_valid_output = 1 ’b1 ;
endcase

as se r t ( f_valid_output ) ;
end
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If you try implementing this design as it is now,

˝ You’ll be disappointed
˝ All the LED’s will light dimly

The LED’s will toggle so fast you cannot see them change

We need a way to slow this down.
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You may remember the integer clock divider

˝ Let’s use it here

always @ ( posedge i_clk )
i f ( wait_counter == 0)

wait_counter <= CLK_RATE_HZ´1;
e l s e

wait_counter <= wait_counter ´ 1 ’b1 ;

always @ ( posedge i_clk )
begin

stb <= 1 ’b0 ;
i f ( wait_counter == 0)

stb <= 1 ’b1 ;
end
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This wait_counter is limited in range

˝ It will only range from 0 to CLK_RATE_HZ´1

˝ Don’t forget the assertion that wait_counter remains in
range!

always @ ( posedge i_clk )
as se r t ( wait_counter <= CLK_RATE_HZ ´1);

If your state variable can only take on some values, always
make an assertion to that affect

˝ Let’s also make sure the stb matches the wait_counter too

always @ ( posedge i_clk )
as se r t ( stb == ( wait_counter == 0 ) ) ;
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Now we can use stb to tell us when to adjust our state

i n i t i a l led_index = 0 ;
always @ ( posedge i_clk )
i f ( stb )
begin

// The l o g i c i n s i d e i s j u s t
// what i t was b e f o r e
// Only the i f ( s t b ) changed
i f ( led_index >= 4 ’ d13 )

led_index <= 0 ;
e l s e

led_index <= led_index + 1 ’b1 ;
end // e l s e no th i ng changes
// wa i t f o r s t b to be t r u e b e f o r e chang ing s t a t e
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Try out the tools

1. Recreate this waveform using Wavedrom

https://wavedrom.com
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Try out the tools

1. Recreate this waveform using Wavedrom
2. Simulate this design

˝ printf o_led anytime it changes
˝ Look at the trace in gtkwave

Does it match our design goal?
Don’t forget to slow it down!

https://wavedrom.com
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Try out the tools

1. Recreate this waveform using Wavedrom
2. Simulate this design
3. Run SymbiYosys

Does this design pass?
If it passes, try assert(led_index <= 4);

Examine the resulting waveform

https://wavedrom.com
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Try out the tools

1. Recreate this waveform using Wavedrom
2. Simulate this design
3. Run SymbiYosys

Does this design pass?
If it passes, try assert(led_index <= 4);

Examine the resulting waveform

Let’s do this one together

https://wavedrom.com
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% verilator -Wall -cc ledwalker.v

%Error: ledwalker.v:61: Can ’t find definition

of variable: o_leed

%Error: Exiting due to 1 error(s)

%Error: Command Failed /usr/bin/verilator_bin

-Wall -cc ledwalker.v

%

˝ Oops, we misspelled o_led in our case statement
˝ We also forgot to start our file with ‘default nettype none

˝ Once fixed, we pass the Verilator check

% verilator -Wall -cc ledwalker.v

%
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% sby -f ledwalker.sby

˝ Another syntax error, mislabeled led_index as led_state
˝ Let’s try again
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% sby -f ledwalker.sby

It failed, but how? Need to scroll up for the details
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˝ Fail in line 96
˝ Trace file in ledwalker/engine 0/trace.vcd

˝ Open this in GTKWave, compare to line 96
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˝ See the bug?
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˝ See the bug? o_led starts at 8’h00

˝ We never initialized o_led to a valid value
˝ initial o_led = 8’h01; fixes this
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˝ Same trace file name
˝ Assertion failed in line 72
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˝ if (led_index > 4’d12) in line 39 fixes this
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Let’s add a quick cover property

always @ (∗ )
cover ( ( led_index = 0)&&(o_led == 4 ’h2 ) ) ;
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Your turn! Use the tools to modify the design

1. Recreate this waveform using Wavedrom
2. Simulate this design
3. Run SymbiYosys
4. Run your device’s Synthesis tool

˝ Make sure your design . . .

– Passes a timing check
– Fits within your device

5. Now repeat with the clock divider

https://wavedrom.com
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Bonus: If you have hardware and more than one LED

˝ Adjust this design for the number of LEDs you have
˝ Implement this on your hardware

Does it work?
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What did we learn this lesson?

˝ What a Finite State Machine (FSM) is
˝ Why FSM’s are necessary
˝ Verilog case statement
˝ Verilog cascaded if

˝ Formal assert statement
˝ How to run SymbiYosys
˝ How to run slow down an FSM
˝ Verilog is fun!
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