
Gisselquist
Technology, LLC

3. Finite State

Machines

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

2 / 51

˝ What is a Finite State Machine?
˝ Why do I need it?
˝ How do I build one?

Objectives

˝ Learn the concatenation operator
˝ Be able to explain a shift register
˝ To get basic understanding of Finite State Machines
˝ To learn how to build and use Finite State Machines

Shift Register

Lesson Overview

Ź Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

3 / 51

The concatenation operator

always @ (posedge i_clk)
o_led <= { o_led [6 : 0] , o_led [7] } ;

Composes a new bit-vector from other pieces

Shift Register

Lesson Overview

Ź Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

4 / 51

The concatenation operator

always @ (posedge i_clk)
o_led <= { o_led [6 : 0] , o_led [7] } ;

Simplifies what otherwise would be quite painful

always @ (posedge i_clk)
begin

o_led [0] <= o_led [7] ;
o_led [1] <= o_led [0] ;
o_led [2] <= o_led [1] ;
o_led [3] <= o_led [2] ;
o_led [4] <= o_led [3] ;
o_led [5] <= o_led [4] ;
o_led [6] <= o_led [5] ;
o_led [7] <= o_led [6] ;

end

Shift Register

Lesson Overview

Ź Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

5 / 51

A shift register shifts bits through a register

˝ Can shift from LSB to MSB

always @ (posedge i_clk)
o_led <= { o_led [6 : 0] , i_input } ;

˝ or from MSB to LSB

always @ (posedge i_clk)
o_led <= { i_input , o_led [7 : 1] } ;

Shift Register

Lesson Overview

Ź Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

6 / 51

You can use this to create a neat LED display as well

˝ You just need to mix the shift register

i n i t i a l o_led = 8 ’h1 ;
always @ (posedge i_clk)
i f (stb)

o_led <= { o_led [6 : 0] , o_led [7] } ;

˝ With a counter to slow it down

reg [2 6 : 0] counter ;
reg stb ;
i n i t i a l { stb , counter } = 0 ;
always @ (posedge i_clk)

{ stb , counter } <= counter + 1 ’b1 ;

˝ stb here is a strobe signal. A strobe signal is true for one
clock only, whenever an event takes place

Shift Register

Lesson Overview

Ź Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

7 / 51

You can use this to create a neat LED display as well

˝ You just need to mix the shift register

i n i t i a l o_led = 8 ’h1 ;
always @ (posedge i_clk)
i f (stb)

o_led <= { o_led [6 : 0] , o_led [7] } ;

˝ With a counter to slow it down

reg [2 6 : 0] counter ;
reg stb ;
i n i t i a l { stb , counter } = 0 ;
always @ (posedge i_clk)

{ stb , counter } <= counter + 1 ’b1 ;

˝ Note that you can assign to a concatenation as well

Wavedrom

Lesson Overview

Shift Register

Ź Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

8 / 51

If you’ve never seen Wavedrom, it is an awesome tool!
Here’s a waveform description of our shift register

i n i t i a l o_led = 8 ’h1 ;
always @ (posedge i_clk)

o_led <= { o_led [6 : 0] , o_led [7] } ;

What would it take to make the LED’s go back and forth?

http://wavedrom.com

LED Walker

Lesson Overview

Shift Register

Wavedrom

Ź LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

9 / 51

Let’s build an LED walker!

˝ Active LED should walk across valid LED’s and back

We’ll assume 8 LEDs
Shift registers don’t naturally go both ways

˝ Only one LED should be active at any time
˝ One LED should always be active at any given time

Most of this project can be done in simulation

Wavedrom

Lesson Overview

Shift Register

Wavedrom

LED Walker

Ź Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

10 / 51

Here’s a waveform description of what I want this design to do

˝ This “goal” diagram can help mitigate complexity

Tikz-Timing

Lesson Overview

Shift Register

Wavedrom

LED Walker

Ź Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

11 / 51

Tikz-timing also works nicely for LATEX users

i clk

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

o led[6]

o led[7]

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave

https://ctan.org/pkg/tikz-timing

The Need

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

Ź The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

12 / 51

Were we building in C, this would be our program

wh i l e (1) {

o l ed = 0x01;

o l ed = 0x02;

o l ed = 0x04;

// ...

o l ed = 0x80;

o l ed = 0x40;

// ...

o l ed = 0x04;

o l ed = 0x02;

}

How do we turn this code into Verilog?

Case Statement

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Ź Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

13 / 51

We could use a giant cascaded if statement

always @ (posedge i_clk)
i f (o_led == 8 ’ b0000_0001)

o_led <= 8 ’ h02 ;
e l s e i f (o_led == 8 ’ b0000_0010)

o_led <= 8 ’ h04 ;
e l s e i f (o_led == 8 ’ b0000_0100)

o_led <= 8 ’ h08 ;
e l s e i f (o_led == 8 ’ b0000_1000)

o_led <= 8 ’ h08 ;
// . . .
// Don ’ t f o r g e t a f i n a l e l s e !
e l s e // i f (o l e d == 8 ’ b0000 0010)

o_led <= 8 ’ h01

Case Statement

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Ź Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

14 / 51

We could use a giant case statement

always @ (posedge i_clk)
case (o_led)
8 ’ b0000_0001 : o_led <= 8 ’ h02 ;
8 ’ b0000_0010 : o_led <= 8 ’ h04 ;
// . . .
8 ’ b0010_0000 : o_led <= 8 ’ h40 ;
8 ’ b0100_0000 : o_led <= 8 ’ h80 ;
8 ’ b1000_0000 : o_led <= 8 ’ h40 ;
// . . .
8 ’ b0000_0100 : o_led <= 8 ’ h02 ;
8 ’ b0000_0010 : o_led <= 8 ’ h01 ;
de fau l t : o_led <= 8 ’ h01 ;
endcase

Can anyone see a problem with these two approaches?

The Need

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Ź Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

15 / 51

A better way: Let’s assign an index to each of these outputs

// . . . u s i n g C++ no t a t i o n aga i n
o_led = 0x01 ; // 1
o_led = 0x02 ; // 2
o_led = 0x04 ; // 3
// . . .
o_led = 0x80 ; // 8
o_led = 0x40 ; // 9
// . . .
o_led = 0x04 ; // 13
o_led = 0x02 ; // 14

In software, you might think of this as an instruction address

Tikz-Timing

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Ź Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

16 / 51

Here’s what an updated waveform diagram might look like

i clk

state 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

o led[6]

o led[7]

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave

The Need

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

Ź The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

17 / 51

We can now set the result based upon the instruction address

always @ (posedge i_clk)
case (led_index)
4 ’h0 : o_led <= 8 ’ h01 ;
4 ’h1 : o_led <= 8 ’ h02 ;
4 ’h2 : o_led <= 8 ’ h04 ;
// . . .
4 ’h7 : o_led <= 8 ’ h80 ;
4 ’h8 : o_led <= 8 ’ h40 ;
// . . .
4 ’hc : o_led <= 8 ’ h02 ;
4 ’hd : o_led <= 8 ’ h01 ;
de fau l t : o_led <= 8 ’ h01 ;
endcase

˝ This is an example of a finite state machine

The addresses

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

Ź The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

18 / 51

All we need now is something to drive the instruction address

˝ This is known as the state of our finite state machine

i n i t i a l led_index = 0 ; // Our ” s t a t e ” v a r i a b l e
always @ (posedge i_clk)
i f (led_index >= 4 ’ d13)

led_index <= 0 ;
e l s e

led_index <= led_index + 1 ’b1 ;

Simulation

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Ź Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

19 / 51

Go ahead and simulate this design

˝ Does it work as intended?
˝ Did we miss anything?

Finite State Machine

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Ź

Finite State
Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

20 / 51

A finite state machine consists of. . .

˝ Inputs
˝ State Variable,

Finite means there are a limited number of states

˝ Outputs

Finite State Machine

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Ź

Finite State
Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

20 / 51

A finite state machine consists of. . .

˝ Inputs // we didn’t have any

˝ State Variable, // led index , or addr

Finite means there are a limited number of states

˝ Outputs // o led

Keep it just that simple.

Simple

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Ź Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

21 / 51

˝ State machines are conceptually very simple
˝ We’ll ignore the excess math here

Two classical FSM forms

˝ Mealy
˝ Moore

Two implementation approaches

˝ One process
˝ Two process

Mealy

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Ź Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

22 / 51

Outputs depend upon the current state plus inputs

always @ (∗)
i f (! i_display_enable)

o_led = 0 ;
e l s e

case (led_index)
4 ’h1 : o_led = 8 ’ h01 ;
4 ’h2 : o_led = 8 ’ h02 ;
4 ’h3 : o_led = 8 ’ h04 ;
4 ’h4 : o_led = 8 ’ h08 ;
// . . .
endcase

Moore

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Ź Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

23 / 51

Outputs depend upon the current state only

// Update the s t a t e
always @ (posedge i_clk)

enabled <= i_display_enable ;
// Crea te the ou tpu t s
always @ (∗)
i f (! enabled)

o_led = 0 ;
e l s e

case (led_index)
4 ’h1 : o_led = 8 ’ h01 ;
4 ’h2 : o_led = 8 ’ h02 ;
// . . .
endcase

The inputs are then used to determine the next state

One Process FSM

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

Ź

One Process
FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

24 / 51

A one process state machine

˝ Created with synchronous always block(s)

i n i t i a l led_index = 0 ; // Our ” s t a t e ” v a r i a b l e
always @ (posedge i_clk)
begin

i f (led_index >= 4 ’he)
led_index <= 0 ;

e l s e

led_index <= led_index + 1 ’b1 ;

case (led_index)
4 ’h0 : o_led <= 8 ’ h01 ;
// . . .
endcase

end

Two Process FSM

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Ź

Two Process
FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

25 / 51

Two Process FSM uses both synchronous and combinatorial logic

always @ (∗)
begin

i f (led_index >= 4 ’he)
next_led_index = 0 ;

e l s e

next_led_index

= next_led_index + 1 ’b1 ;
case (led_index)
4 ’h0 : o_led = 8 ’ h01 ;
// . . .
endcase

end

always @ (posedge i_clk)
led_index <= next_led_index ;

Which to use?

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Ź Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

26 / 51

Pick whichever finite state machine form . . .

˝ . . . you are most comfortable with

There is no right answer here

Which to use?

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Ź Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

26 / 51

Pick whichever finite state machine form . . .

˝ . . . you are most comfortable with

There is no right answer here

but people still argue about it!
˝ Tastes great
˝ Less Filling

I tend to use one process FSM’s

Formal Verification

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Ź

Formal
Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

27 / 51

Formal Verification is a process to prove your design “works”

˝ Fairly easy to use
˝ Can be faster and easier than simulation
˝ Most valuable

– Early in the design process
– For design components, and not entire designs

Formal Verification

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Ź

Formal
Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

28 / 51

Formal Verification

˝ You specify properties your design must have
˝ A solver attempts to prove if your design has them
˝ If the solver fails

– It will tell you what property failed
By line number

– It will generate a trace showing the failure

˝ These traces tend to be much shorter than simulation failure
traces

Assertion

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Ź Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

29 / 51

The free version of Yosys supports immediate assertions

Two types
˝ Clocked – only checked on clock edges

// Remember how we on l y
// used some o f the s t a t e s ?
always @ (posedge i_clk)

as se r t (led_state <= 4 ’ d13) ;

˝ Combinational – always checked

always @ (∗)
as se r t (led_state <= 4 ’ d13) ;

SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

Ź SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

30 / 51

To verify this design using SymbiYosys,

˝ You’ll need a script

[opt ions]
mode prove

[engines]
smtbmc

[s c r i p t]
read ´formal ledwalker . v
. . . o t h e r f i l e s would go he r e
prep ´top ledwalker

[f i l e s]
L i s t a l l f i l e s and r e l a t i v e paths he r e
ledwalker . v

Three Basic FV Modes

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

Ź SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

31 / 51

1. BMC (Bounded Model Checking)

[opt ions]
mode bmc

depth 20

˝ Examines the first N steps (20 in this case)
˝ . . . looking for a way to break your assertion(s)
˝ Can find property (i.e. assert) failures
˝ An assert is a safety property

– Succeeds only if no trace can be found that makes
any one of your assertions fail

Three Basic FV Modes

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

Ź SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

32 / 51

1. BMC (Bounded Model Checking)
2. Cover

[opt ions]
mode cover

depth 20

˝ Examines the first N steps (20 in this case)
˝ . . . looking for a way to make any cover statement pass

always @ (posedge i_clk)
cover (led_state == 4 ’he) ;

˝ No trace will be generated if no way is found
˝ cover is a liveness property

Succeeds if one trace, any trace, can be found to
make the statement true

Three Basic FV Modes

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

Ź SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

33 / 51

1. BMC (Bounded Model Checking)
2. Cover
3. Full proof using k-induction

[opt ions]
mode prove

depth 20

˝ Examines the first N steps (20 in this case)
˝ Also examines an arbitrary N steps

starting in an arbitrary state

The induction step will ignore your initial statements
Correct functionality must be guaranteed using assert

statements

˝ Can prove your properties hold for all time
˝ This is also a safety property check

Example property

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

Ź SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

34 / 51

Assert the design can only contain one of eight outputs

always @ (∗)
begin

f_valid_output = 0 ;
case (o_led)
8 ’ h01 : f_valid_output = 1 ’b1 ;
8 ’ h02 : f_valid_output = 1 ’b1 ;
8 ’ h04 : f_valid_output = 1 ’b1 ;
8 ’ h08 : f_valid_output = 1 ’b1 ;
8 ’ h10 : f_valid_output = 1 ’b1 ;
8 ’ h20 : f_valid_output = 1 ’b1 ;
8 ’ h40 : f_valid_output = 1 ’b1 ;
8 ’ h80 : f_valid_output = 1 ’b1 ;
endcase

as se r t (f_valid_output) ;
end

It doesn’t work

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

Ź SymbiYosys

Integer Clock
Divider

Exercise

Conclusion

35 / 51

If you try implementing this design as it is now,

˝ You’ll be disappointed
˝ All the LED’s will light dimly

The LED’s will toggle so fast you cannot see them change

We need a way to slow this down.

Integer Clock Divider

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Ź

Integer Clock
Divider

Exercise

Conclusion

36 / 51

You may remember the integer clock divider

˝ Let’s use it here

always @ (posedge i_clk)
i f (wait_counter == 0)

wait_counter <= CLK_RATE_HZ´1;
e l s e

wait_counter <= wait_counter ´ 1 ’b1 ;

always @ (posedge i_clk)
begin

stb <= 1 ’b0 ;
i f (wait_counter == 0)

stb <= 1 ’b1 ;
end

Integer Clock Divider

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Ź

Integer Clock
Divider

Exercise

Conclusion

37 / 51

This wait_counter is limited in range

˝ It will only range from 0 to CLK_RATE_HZ´1

˝ Don’t forget the assertion that wait_counter remains in
range!

always @ (posedge i_clk)
as se r t (wait_counter <= CLK_RATE_HZ ´1);

If your state variable can only take on some values, always
make an assertion to that affect

˝ Let’s also make sure the stb matches the wait_counter too

always @ (posedge i_clk)
as se r t (stb == (wait_counter == 0)) ;

Integer Clock Divider

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Ź

Integer Clock
Divider

Exercise

Conclusion

38 / 51

Now we can use stb to tell us when to adjust our state

i n i t i a l led_index = 0 ;
always @ (posedge i_clk)
i f (stb)
begin

// The l o g i c i n s i d e i s j u s t
// what i t was b e f o r e
// Only the i f (s t b) changed
i f (led_index >= 4 ’ d13)

led_index <= 0 ;
e l s e

led_index <= led_index + 1 ’b1 ;
end // e l s e no th i ng changes
// wa i t f o r s t b to be t r u e b e f o r e chang ing s t a t e

Exercise

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

39 / 51

Try out the tools

1. Recreate this waveform using Wavedrom

https://wavedrom.com

Exercise

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

39 / 51

Try out the tools

1. Recreate this waveform using Wavedrom
2. Simulate this design

˝ printf o_led anytime it changes
˝ Look at the trace in gtkwave

Does it match our design goal?
Don’t forget to slow it down!

https://wavedrom.com

Exercise

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

40 / 51

Try out the tools

1. Recreate this waveform using Wavedrom
2. Simulate this design
3. Run SymbiYosys

Does this design pass?
If it passes, try assert(led_index <= 4);

Examine the resulting waveform

https://wavedrom.com

Exercise

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

40 / 51

Try out the tools

1. Recreate this waveform using Wavedrom
2. Simulate this design
3. Run SymbiYosys

Does this design pass?
If it passes, try assert(led_index <= 4);

Examine the resulting waveform

Let’s do this one together

https://wavedrom.com

Running Verilator

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

41 / 51

% verilator -Wall -cc ledwalker.v

%Error: ledwalker.v:61: Can ’t find definition

of variable: o_leed

%Error: Exiting due to 1 error(s)

%Error: Command Failed /usr/bin/verilator_bin

-Wall -cc ledwalker.v

%

˝ Oops, we misspelled o_led in our case statement
˝ We also forgot to start our file with ‘default nettype none

˝ Once fixed, we pass the Verilator check

% verilator -Wall -cc ledwalker.v

%

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

42 / 51

% sby -f ledwalker.sby

˝ Another syntax error, mislabeled led_index as led_state
˝ Let’s try again

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

43 / 51

% sby -f ledwalker.sby

It failed, but how? Need to scroll up for the details

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

44 / 51

˝ Fail in line 96
˝ Trace file in ledwalker/engine 0/trace.vcd

˝ Open this in GTKWave, compare to line 96

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

45 / 51

˝ See the bug?

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

45 / 51

˝ See the bug? o_led starts at 8’h00

˝ We never initialized o_led to a valid value
˝ initial o_led = 8’h01; fixes this

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

46 / 51

˝ Same trace file name
˝ Assertion failed in line 72

Running SymbiYosys

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

47 / 51

˝ if (led_index > 4’d12) in line 39 fixes this

Cover Property

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

48 / 51

Let’s add a quick cover property

always @ (∗)
cover ((led_index = 0)&&(o_led == 4 ’h2)) ;

Exercise

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

49 / 51

Your turn! Use the tools to modify the design

1. Recreate this waveform using Wavedrom
2. Simulate this design
3. Run SymbiYosys
4. Run your device’s Synthesis tool

˝ Make sure your design . . .

– Passes a timing check
– Fits within your device

5. Now repeat with the clock divider

https://wavedrom.com

Bonus

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Ź Exercise

Conclusion

50 / 51

Bonus: If you have hardware and more than one LED

˝ Adjust this design for the number of LEDs you have
˝ Implement this on your hardware

Does it work?

Conclusion

Lesson Overview

Shift Register

Wavedrom

LED Walker

Wavedrom

The Need

Case Statement

The Need

The addresses

Simulation

Finite State Machine

Simple

Mealy

Moore

One Process FSM

Two Process FSM

Which to use?

Formal Verification

Assertion

SymbiYosys

Integer Clock
Divider

Exercise

Ź Conclusion

51 / 51

What did we learn this lesson?

˝ What a Finite State Machine (FSM) is
˝ Why FSM’s are necessary
˝ Verilog case statement
˝ Verilog cascaded if

˝ Formal assert statement
˝ How to run SymbiYosys
˝ How to run slow down an FSM
˝ Verilog is fun!

	
	Lesson Overview
	Shift Register
	Wavedrom
	LED Walker
	Wavedrom
	The Need
	Case Statement
	The Need
	The addresses
	Simulation
	Finite State Machine
	Simple
	Mealy
	Moore
	One Process FSM
	Two Process FSM
	Which to use?
	Formal Verification
	Assertion
	SymbiYosys
	Integer Clock Divider
	Exercise
	Conclusion

