
Gisselquist
Technology, LLC

5. A Bus Scope

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

2 / 92

Objective: Learn how to design your own internal scope

˝ Learn how to deal with bus interactions requiring multiple
clock cycles

˝ A good internal logic analyzers is a requirement for hardware
debugging

˝ Knowing how to build your own scope will make tailoring
your own scope easier later

˝ Here’s a story showing how valuable a good home-made
internal scope can be

https://zipcpu.com/blog/2020/08/31/run-length-encoding.html

Work in Progress

Ź Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

3 / 92

This lesson is currently a work in progress.

It will remain so until . . .

˝ I’ve filled out the simulation section, created an exercise,
added host software, and . . .

˝ I’ve built the design myself

Project

Lesson Overview

Ź Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

4 / 92

A Scope

Lesson Overview

Project

Ź A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

5 / 92

So, what do I mean by a “scope”?

˝ A “scope” is something that collects and displays data

– Data is often displayed in lines, or traces, across the screen
We’ll just capture the data today
We can use GTKWave for the display

˝ Data often arrives faster than it can be displayed or viewed
˝ With a trigger, a scope can be made to sample relevant data

– The trigger can be some event, such as an error condition
– Data can be displayed up to the trigger
– . . . or even after the trigger

Uses for a scope

Lesson Overview

Project

A Scope

Ź Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

6 / 92

Hardware is notoriously difficult to debug

˝ This isn’t software

– A good software debugger stop your program on any
breakpoint

– While stopped, you can examine any variable in your
program at any time

– You can then step through your design

˝ Hardware doesn’t stop
˝ It takes hardware to examine hardware

– Seeing everything requires a lot of extra hardware

˝ A good scope can make it possible to get a glimpse of what’s
going on within your design

Uses for a scope

Lesson Overview

Project

A Scope

Ź Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

7 / 92

An “internal logic analyzer”, or internal scope, can make
hardware debugging easier possible

˝ You won’t see much of what’s going on in your design

– FPGA RAM space is limited
– You can’t collect everything forever

˝ You might see enough

– Sometimes simulation is just too slow
– Sometimes you need to see how external peripherals

interact with your design
– “Seeing” what’s going on can go a long way towards

debugging it

Vendor bugs

Lesson Overview

Project

A Scope

Uses for a scope

Ź Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

8 / 92

Need help with vendor IP?

˝ I’ve been known to wander various vendor forums
˝ Users report problems with their own and vendor designs on

these forums
˝ (Interface problems are not uncommon)
˝ Without a trace illustrating the bug, bugs don’t get isolated
˝ It’s impossible to tell which component caused the bug

Traces, whether generated from simulation or actual hardware,
are essentially required for isolating and solving user issues

A Bus Scope

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

Ź A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

9 / 92

What makes a “Bus Scope” special?

˝ It has a bus based interface

– The bus provides the infrastructure it needs
– It’s controlled from the bus–not JTAG
– It’s read from the bus

˝ An on-board CPU can control or trigger it (if desired)
˝ Unlike vendor-based scopes, a “bus scope” is controlled from

within the design itself.

A Bus Scope

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

Ź A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

10 / 92

Example uses:

˝ You can hold off triggering until you do something you want
to examine

˝ You can check whether or not an external trigger has taken
place, and adjust (i.e. halt) your software at that time

˝ You can either read back via software, or the debugging bus
˝ For example, the ZipCPU’s test S/W:

– Manually triggers a CPU scope on any test failure
– Then outputs details of the test failure
– The scopes results can then be read and processed

externally

A Bus Scope

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

Ź A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

11 / 92

DSP designs have special needs

˝ DSP designs often have to deal with data rates slower than
the clock rate

˝ These signals often include handshaking signals to indicate
valid data

– AXI Stream uses S_AXIS_TVALID and S_AXIS_TREADY to
control such data
This method often runs into trouble if the source, often
an A/D digitizer, can’t handle backpressure.
(Backpressure exists when VALID && !READY)

– I like to use a CE signal for this purpose. (I allow no back
pressure.)
This method can still run into trouble when driving a D/A
where backpressure may be required

A Bus Scope

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

Ź A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

12 / 92

DSP Requirements:

˝ DSP designs can be a challenge to examine when looking at
a trace

– The data is only valid on specific cycles
– This creates artifacts within traces that can be difficult to

interpret

˝ If we only capture on valid data cycles, our result will be
easier to understand

˝ Therefore, we’ll want to only capture data when an external
data valid signal is true.

˝ We can use i_ce for this purpose

Achille’s Heel

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Ź Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

13 / 92

“Bus Scopes” have an Achilles heel:

˝ If the bus ever locks up, the debugging data becomes
inaccessible

˝ A good formal proof will guarantee the bus doesn’t lock up

– Formal methods become essential here
– Not just for the bus scope, but for the entire design

Project Structure

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Ź

Project
Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

14 / 92

Let’s capture these requirements in a drawing:

This should look very similar to our last project

Design Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Ź

Design
Requirements

CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

15 / 92

Before diving in, let’s enumerate some requirements

˝ Since we’ll use this trace data for debugging, our data must
be reliable

– Since memory cannot be reset, this means we’ll need to
make certain that all memory is filled before we trigger
any data capture

˝ Captures need to be triggered

– Triggers can be either described in hardware, or written by
the CPU

˝ The CPU must be able to:

– Know if the scope has been triggered
– Read out the results

CPU Debugging

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

Ź CPU Debugging

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

16 / 92

True story: Debugging with no debugging bus

˝ In one ZipCPU design, the FPGA had no room for a
debugging bus

˝ The CPU, however, still needed debugging

– This was before I discovered formal methods

˝ A watchdog timer rebooted the CPU if it ever locked up

– The watchdog timer also triggered the scope

˝ On reset, the CPU read out the scope’s data

– Yes, this routine was written in assembly
– Assembly allowed me to capture the CPU’s registers on

reset as well

˝ This allowed me to debug the CPU

https://github.com/ZipCPU/s6soc
https://zipcpu.com/blog/2017/10/19/formal-intro.html
https://github.com/ZipCPU/s6soc/blob/master/sw/zipos/resetdump.s

Trigger Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Ź

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

17 / 92

We want the ability to see into the past

Use cases:

˝ The trigger describes a bug
˝ You want to know what lead up to the bug
˝ For example:

– Your CPU hangs, and you want to know why

https://zipcpu.com/zipcpu/2019/02/04/debugging-that-cpu.html

Trigger Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Ź

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

18 / 92

We want the ability to see into the past

Use cases:

˝ For example:

– A CPU self-test fails, and you want to know what
happened

– In this case, you can manually trigger the scope once the
bug has been detected

– The trace will tell you what lead up to the bug

https://github.com/ZipCPU/zbasic/blob/master/sw/board/cputest.c

Trigger Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Ź

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

19 / 92

We want the ability to see what’s going on now

Use cases:

˝ The trigger describes the beginning of an event
˝ You want to know what happens next
˝ Example:

– You write to the FPGA’s configuration port (ICAPE)
– You want to see and understand what happens next

Trigger Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Ź

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

20 / 92

We want the ability to see what happens next

Use cases:

˝ The trigger describes the beginning of an event
˝ The capture duration isn’t long enough to get all of what

happens next
˝ Example: You are debugging an HDMI input stream

– You trigger off of a start of frame signal
– You want to capture the 80th row of video

Trigger Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Ź

Trigger
Requirements

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

21 / 92

This leads to a programmable holdoff requirement

This programmable holdoff will need to be controlled by the bus

Design Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Ź

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

22 / 92

Let’s go back to enumerating these requirements:

˝ Since we’ll use this trace data for debugging, our data must
be reliable

˝ Data capture is initially continuous
˝ Captures need to be triggered

– Data capture stops some programmable time after the
trigger

˝ We must be able to identify the trigger time later
˝ Data must be read oldest to most recent
˝ The CPU must be able to:

– (Continued on the next page)

Design Requirements

Lesson Overview

Project

A Scope

Uses for a scope

Vendor bugs

A Bus Scope

Achille’s Heel

Project Structure

Design
Requirements

CPU Debugging

Trigger
Requirements

Ź

Design
Requirements

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

23 / 92

Let’s go back to enumerating these requirements: (Continued)

˝ The CPU must be able to:

– Reset the scope
– Know when its memory has been filled
– Know if the trigger has been hit
– Manually trigger a capture
– Control the holdoff amount
– Read the data back

˝ This control may also be handled via our debugging bus

Design

Lesson Overview

Project

Ź Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

24 / 92

State Machine

Lesson Overview

Project

Design

Ź State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

25 / 92

These design requirements lend themselves nicely to a basic state
machine

State Machine

Lesson Overview

Project

Design

Ź State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

26 / 92

1. Reset

˝ Memory pointers are initialized

2. Initial Memory Capture

˝ Incoming data used to fill memory

3. Primed

˝ At this point, all memory has been written to
˝ Here is where we become sensitive to the trigger

4. Triggered

˝ Once the trigger is received, we start a countdown timer

5. Stopped

˝ When the countdown timer hits zero, we stop recording

State Machine

Lesson Overview

Project

Design

Ź State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

27 / 92

Although this design is easily described by a state machine . . .

˝ I’ve never built it like a state machine

– There’s no internal case(state) statement
– While you could use one, I just never have

˝ Instead, I use flags to identify the various states

– s_reset

– primed

– triggered

– stopped

Basic Scope Design

Lesson Overview

Project

Design

State Machine

Ź

Basic Scope
Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

28 / 92

Parts of this are easy enough we could almost start immediately:

1. We’ll need a memory, a write pointer, and a flag to know if
we’ve stopped collecting

parameter W = 32 , // Match the bus width
LGMEM = 12 ; // Log o f the memory s i z e

reg [W´1:0] mem [0:(1<<LGNA) ´1] ;
reg [LGMEM ´1:0] wr_addr ;
reg stopped ;

Basic Scope Design

Lesson Overview

Project

Design

State Machine

Ź

Basic Scope
Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

29 / 92

Parts of this are easy enough we could almost start immediately:

1. We’ll need a memory, a write pointer, and a flag to know if
we’ve stopped collecting

2. We’ll need to write to memory until we’ve been stopped

always @ (posedge i_clk)
i f (s_reset)

wr_addr <= 0 ;
e l s e i f (! stopped && i_ce)

wr_addr <= wr_addr + 1 ;

always @ (posedge i_clk)
i f (! stopped && i_ce)

mem [wr_addr] <= i_scope_data ;

Scope Design

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Ź Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

30 / 92

When is the memory full?

reg primed ;

i n i t i a l primed = 0 ;
always @ (posedge i_clk)
i f (s_reset)

primed <= 0 ;
e l s e i f (i_ce && ! primed)

primed <= (&wr_addr) ;

Once primed becomes true,

˝ All memory is valid
˝ Incoming values are now overwriting prior (valid) memory

values
˝ We can now respond to a trigger

Scope Design

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Ź Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

31 / 92

We can only trigger once we’ve been primed

reg triggered ;

i n i t i a l triggered = 0 ;
always @ (posedge i_clk)
i f (s_reset)

triggered <= 0 ;
e l s e i f (primed && ! triggered)

triggered <= w_trigger ;

˝ We only ever trigger once–only a reset clears a trigger
˝ Once triggered becomes true,

– We’ll start our count-down timer

Note that i_ce is not required for a trigger to be recognized

Scope Design

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Ź Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

32 / 92

Collection stops r_holdoff time steps after the trigger

˝ This will require a counter

reg [HOLDOFFBITS ´1:0] counter , r_holdoff ;

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f (s_reset | | ! triggered)

counter <= r_holdoff ;
e l s e i f (i_ce && counter > 0)

counter <= counter ´ 1 ;

Scope Design

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Ź Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

33 / 92

We can now generate our stopped flag.

reg stopped ;

i n i t i a l stopped = 0 ;
always @ (posedge i_clk)
i f (s_reset | | ! primed)

stopped <= 0 ;
e l s e i f (i_ce && ! stopped)
begin

i f (w_trigger && r_holdoff == 0)
// T r i g g e r now
stopped <= 1 ;

i f (triggered && counter == 0)
// Countdown complete
stopped <= 1 ;

end

Bus Interface

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Ź Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

34 / 92

This design only needs two registers:

0: Control register: Actions include

˝ Reset the scope
˝ Adjust the holdoff
˝ Query the state
˝ Manually trigger the capture
˝ Disable the hardware trigger

4: Data register

˝ Read scope data back once capture has stopped

– Data is read from oldest to most recent

˝ BONUS: Read the current/active incoming data, before
collection is complete

Control Requirements

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Ź Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

35 / 92

We’ll control our design with a couple of knobs:
012345678910111213141516171819202122232425262728293031

RSTPMD LgM Holdoff

R Reset in progress. Writes automatically reset
S Capture has stopped (Read only)
T Design has been triggered (Read only)
P Memory has been primed (Read only)
M Manual trigger
D Disable trigger (write only)

LgM Log (based two) of the Memory Size (i.e. LGMEM)

Internal Reset

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Ź Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

36 / 92

Our design needs two basic resets:

1. On any initial system reset
2. On a user command

On any write, we might adjust critical values and so require a
reset

˝ Writes automatically trigger resets
˝ . . . unless a 1 is written to the reset bit to prevent this

automatic reset

Internal Reset

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Ź Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

37 / 92

Our design needs two basic resets:

1. On any initial system reset
2. On a user command

This forces us to have a separate reset register, s_reset

i n i t i a l s_reset = 1 ;
always @ (posedge i_clk)
i f (i_reset)

s_reset <= 1 ;
e l s e i f (i_stb && ! o_stall && i_we && i_addr == 0)

// Reset on e v e r y wr i t e ,
// . . . u n l e s s t o l d o t h e rw i s e

s_reset <= ! i_sel [3] | | ! i_data [3 1] ;
e l s e

s_reset <= 0 ;

Trigger Control

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Ź Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

38 / 92

i n i t i a l { m_trigger , r_disabled } = 0 ;
always @ (posedge i_clk)
i f (i_reset)
begin

m_trigger <= 0 ; // Manual t r i g g e r
r_disabled <= 0 ; // D i s a b l e t r i g g e r

end e l s e begin
i f (s_reset)

m_trigger <= 0 ;
i f (i_stb && ! o_stall && i_we

&& i_addr == 0 && i_sel [3])
begin

i f (i_data [2 7])
m_trigger <= 1 ;

r_disabled <= i_data [2 6] ;
end

end

Trigger Control

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Ź Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

39 / 92

Style question: When should signals be placed into the same
process?

˝ If they are logically related, and
˝ If they use the same control structure
˝ I’m known for using a lot of processes, almost one per signal

– I’ve learned to do this to minimize logic usage

In this case, the two signals were logically related and (almost)
used the same control structure.

Trigger Control

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Ź Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

40 / 92

We can now generate an internal trigger signal

˝ We trigger on any external (hardware) trigger

– But only if it hasn’t been manually disabled

˝ We’ll also trigger manually on any request

ass ign w_trigger = m_trigger

| | (i_trigger && ! r_disabled) ;

I prefixed this signal with w_ for wire, to remind myself that this
is a combinatorial signal. triggered is our registered copy of this
signal.

Holdoff

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Ź Holdoff

Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

41 / 92

Holdoff control follows the basic register write logic

i n i t i a l r_holdoff = (1<<LGMEM)´4;
always @ (posedge i_clk)
i f (i_reset)

r_holdoff <= (1<<LGMEM)´4;
end e l s e i f (i_stb && ! o_stall && i_we

&& i_addr == 0)
begin

i f (i_sel [0])
r_holdoff <= i_data [7 : 0] ;

i f (i_sel [3])
r_holdoff <= i_data [1 5 : 8] ;

i f (i_sel [3])
r_holdoff <= i_data [1 9 : 1 6] ;

end

Control Register

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Ź Control Register

Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

42 / 92

Reading from the control register requires composing multiple
bits together.

˝ I like to create a signal to hold these values

wire [3 1 : 0] w_control ;

ass ign w_control = { s_reset , stopped , triggered ,
primed , m_trigger , r_disabled ,
1 ’b0 , LGMEM [4 : 0] , r_holdoff } ;

Reading Data

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Ź Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

43 / 92

Reading data is a bit more of a challenge

˝ The address to be read is an offset from the write pointer

– We need to do this to put the data back in order
– Read from last to first–regardless of where last and first

are in memory

˝ Our memory rules require that all memory reads require their
own clock cycle

– This can’t be merged with the bus address selection

˝ This gets harder under AXI, but with Wishbone it’s pretty
easy

˝ To keep it easier, we’ll insist that all bus accesses take the
same number of clock cycles

Reading Data

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Ź Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

44 / 92

always @ (posedge i_clk)
i f (! stopped)

// Po in t to the next w r i t e add r e s s
// Thi s w i l l be the o l d e s t mem l o c a t i o n
rd_addr <= wr_addr + (i_ce) ? 1 : 0 ;

e l s e i f (i_stb && ! o_stall && ! i_we && i_addr [0])
rd_addr <= rd_addr + 1 ;

always @ (posedge i_clk)
i f (i_stb && ! o_stall && ! i_we && i_addr [0])

rd_data <= mem [rd_addr] ;

Reading Timing

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Ź Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

45 / 92

Let’s think through this read timing:

1. On the first clock cycle, i_stb && !o_stall will be true

˝ rd_addr will also be valid

2. On the second clock cycle, rd_data will be valid

˝ To keep everything aligned, we’ll need to remember what
address was requested in r_addr

˝ We’ll also need to remember we are responding to a
request. We can put this into a register pre_read

– Don’t forget this register needs to be sensitive to the
bus reset!

3. On the third clock cycle we can return data

˝ This is also the clock cycle when we’ll need to set o_ack

Bus Reads

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Ź Reading Data

Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

46 / 92

always @ (posedge i_clk)
r_addr <= i_addr ;

always @ (posedge i_clk)
case (r_addr)
0 : o_data <= w_control ;
1 : o_data <= (stopped) ? rd_data : i_scope_data ;
endcase

i n i t i a l { o_ack , pre_read } <= 2 ’ b00 ;
always @ (posedge i_clk)
i f (i_reset)

{ o_ack , pre_read } <= 2 ’ b00 ;
e l s e

{ o_ack , pre_read } <= { pre_read ,
i_stb && ! o_stall } ;

ass ign o_stall = 1 ’b0 ; // Never s t a l l

Bus Reads

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Ź Bus Reads

Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

47 / 92

always @ (posedge i_clk)
i f (! stopped)

rd_addr <= wr_addr ;
e l s e i f (i_stb && ! o_stall && ! i_we && i_addr [0])

rd_addr <= rd_addr + 1 ;

always @ (posedge i_clk)
i f (i_stb && ! o_stall && ! i_we && i_addr [0])

rd_data <= mem [rd_addr] ;

Interrupts

Lesson Overview

Project

Design

State Machine

Basic Scope Design

Scope Design

Bus Interface

Internal Reset

Trigger Control

Holdoff

Control Register

Reading Data

Bus Reads

Ź Interrupts

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

48 / 92

We may wish to interrupt our processor when the scope has
stopped.

ass ign o_interrupt = stopped ;

This is easy.
The challenge will come when we wish to build an interrupt
controllers that can handle multiple (potential) interrupt sources.

AXI-Lite notes

Lesson Overview

Project

Design

Ź AXI-Lite notes

AXI Differences

Back-Pressure

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

49 / 92

AXI Differences

Lesson Overview

Project

Design

AXI-Lite notes

Ź AXI Differences

Back-Pressure

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

50 / 92

There are a couple of differences if you are working with AXI

˝ I’ve used i_addr[0] above, since Wishbone uses word
addressing

– This would become S_AXI_AWADDR[2] in AXI-lite, since AXI
uses octet (byte) addressing.
Yes, these is a subtle difference between bytes and octets:
Bytes aren’t always 8-bits. Indeed, the ZipCPU originally
made bytes into 32-bits.

˝ Otherwise, you can replace:

– i_stb && !o_stall && i_we with axil_write_ready

– i_stb && !o_stall && !i_we with axil_read_ready

– Reference our AXI-lite notes for more information

˝ The big problem is back pressure.

Back-Pressure

Lesson Overview

Project

Design

AXI-Lite notes

AXI Differences

Ź Back-Pressure

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

51 / 92

Back Pressure makes AXI pipelines a bit more challenging

˝ S_AXI_ARREADY will only stall the beginning of our pipeline
˝ Getting this to work requires a couple possibilities. We can

either:

– Only ever allow one item into the pipeline
– Stall each stage of our pipeline independently
– Use a (small) FIFO to handle backpressure

˝ In this design, writes do not suffer from backpressure

– Our original write ready logic still works

ass ign axil_write_ready=skd_awvalid && skd_wvalid

&& (! S_AXI_BVALID | | S_AXI_BREADY) ;

Back-Pressure

Lesson Overview

Project

Design

AXI-Lite notes

AXI Differences

Ź Back-Pressure

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

52 / 92

Allowing only one read request into the pipeline is easy

ass ign axil_read_ready = skd_arvalid

&& (! S_AXI_RVALID | | S_AXI_RREADY)
&& ! pre_read ;

The problem? This drops our maximum throughput to 50%.

˝ Is this really a problem? It depends.
˝ If the scope is for debugging purposes, it might be designed

to be rarely read. Slow reads, though important, might not
matter.

˝ If you are routinely reading data from a fast capture, faster
reads might be a requirement

Back-Pressure

Lesson Overview

Project

Design

AXI-Lite notes

AXI Differences

Ź Back-Pressure

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

53 / 92

Another approach is to use two FIFOs

Back-Pressure

Lesson Overview

Project

Design

AXI-Lite notes

AXI Differences

Ź Back-Pressure

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

54 / 92

This double FIFO approach maintains 100% throughput

˝ Only the control signals are used on the first FIFO

– This tells us how to set S_AXI_ARREADY
– Any data channel through the control FIFO is ignored

˝ The pipeline then feeds a data FIFO

– The control FIFO guarantees the data FIFO never
overflows

This is a common AXI structure. If you are working with AXI,
you should become familiar with it.

Formal Verification

Lesson Overview

Project

Design

AXI-Lite notes

Ź

Formal
Verification

Property Files

Contract Checks

Induction Checks

Induction Checks

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

55 / 92

Property Files

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

Ź Property Files

Contract Checks

Induction Checks

Induction Checks

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

56 / 92

Verifying bus components always starts with a bus property file

˝ You should already know how to do the basics of this
˝ The new key here is that you’ll need to correlate the number

of outstanding transactions with the number of items in your
pipeline

always @ (*)
as se r t (fwb_outstanding == o_ack + pre_ack) ;

Contract Checks

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

Property Files

Ź Contract Checks

Induction Checks

Induction Checks

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

57 / 92

The “Contract” checks that the core works as designed

˝ Let the solver pick a data input
˝ Count which input that is
˝ Verify that the same input can be read back at the right read

count

– You may assume the user doesn’t read until the design
has stopped.

BONUS: A better check would be the twin write FIFO check

Induction Checks

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

Property Files

Contract Checks

Ź

Induction
Checks

Induction Checks

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

58 / 92

Let’s also verify our control structure:

˝ triggered should never be set if not primed
˝ stopped should never be set if not triggered
˝ Pick a value in memory.

– Verify that it is written to between s_reset and primed.

˝ Count the clocks from the trigger to when stopped is
asserted.

– Verify that it matches the holdoff

Induction Checks

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

Property Files

Contract Checks

Induction Checks

Ź

Induction
Checks

Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

59 / 92

The assertion for the state machine flags has a basic structure:

always @ (*)
case ({ stopped , triggered , primed })
3 ’ b000 : begin end
3 ’ b001 : begin end
3 ’ b011 : begin end
3 ’ b111 : begin

// We can even add per´s t a t e checks he r e
as se r t (counter == 0) ;
end

de fau l t : as se r t (0) ;

You are likely to see this again.

Do not pass Go

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

Property Files

Contract Checks

Induction Checks

Induction Checks

Ź Do not pass Go

AutoFPGA

Simulation

Host Control

Hardware

60 / 92

I’ve said this before, but:

˝ Do not proceed to integration until you know your core works!

Take whatever time you need get it your core to pass

˝ This applies especially to your bus interfaces
˝ Do what you can with the rest
˝ If you miss a bug later, then adjust your properties to catch it

next time and come back here and re-do this step

Debugging only gets harder from here on out

AutoFPGA

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

Ź AutoFPGA

Bus connection

Interrupts

Bus connection

Scope connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

61 / 92

Bus connection

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Ź Bus connection

Interrupts

Bus connection

Scope connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

62 / 92

As before, let’s use AutoFPGA to wire up this design component

˝ Because of the pipeline, we can’t use any of the canned slave
types
@PREFIX=busscope

@SLAVE.BUS=wb Connect to bus named wb
@SLAVE.TYPE=OTHER Nothing special

˝ We have only two bus addresses:
@NADDR=2 Two word addresses

˝ And one interrupt

Interrupts

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Ź Interrupts

Bus connection

Scope connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

63 / 92

We haven’t discussed AutoFPGA and interrupts before

˝ AutoFPGA can create an N -element vector for you to
contain interrupt signal sources

˝ You can then feed this vector to your interrupt
controller–whatever it is.

Let’s create one of these interrupt vectors:

˝ The required structure is prefixed with PIC

– PIC (Programmable Interrupt Controller)

@PREFIX=buspic An AutoFPGA component
@PIC.BUS=int vector The Verilog name of our int vector
@PIC.MAX=15 Max # of interrupts in this vector

Interrupts

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Ź Interrupts

Bus connection

Scope connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

64 / 92

Once we have a programmable interrupt control (wire vector)
defined, we can now assign interrupts to it.

˝ There are three tags for this purpose:

– @INT.NAME.WIRE: The Verilog name of the wire
containing the interrupt source. AutoFPGA will create the
definition of this wire.

Ź NAME in this case is your name for the interrupt.
Ź It is typically in all caps

– @INT.NAME.PIC: The name of the PIC to which this
interrupt is to be assigned.

– @INT.NAME.ID: This is optional. If given, it will force
the interrupt to have a given position in the interrupt
vector.

Interrupts

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Ź Interrupts

Bus connection

Scope connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

65 / 92

Once we have a programmable interrupt control (wire vector)
defined, we can now assign interrupts to it.

˝ There are three tags for this purpose: WIRE, PIC, and ID

˝ Let’s assign these:

@INT.SCOPE.PIC=buspic AutoFPGA PIC PREFIX
@INT.SCOPE.WIRE=@$(PREFIX) int Interrupt wire name

Bus connection

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Interrupts

Ź Bus connection

Scope connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

66 / 92

We’ll also need to instantiate this scope within our design
@MAIN.INSERT=

busscope

@$ (PREFIX)i (i_clk , i_reset ,
//
// The po r t l i s t f o r the memory po r t
@$ (SLAVE . PORTLIST) ,
//
// Scope t r i g g e r and debug w i r e
@$ (TRIGGER) , @$ (DEBUG) ,
//
// Our i n t e r r u p t
@$ (PREFIX) _int) ;

Scope connections

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Interrupts

Bus connection

Ź

Scope
connections

Scope connections

Register Address

CPU Header

Simulation

Host Control

Hardware

67 / 92

So far, I’ve left the two scope connections undefined.

˝ These are the @TRIGGER and @DEBUG inputs
@TRIGGER=@$(PREFIX) trigger A (default) trigger def’n
@DEBUG=@$(PREFIX) debug A (default) data def’n

˝ They don’t need to be AutoFPGA variables

– However, AutoFPGA has an inheritance capability
– If we make them AutoFPGA variables, they can then be

overridden
– The following uses our bus scope definition file,

scope.txt to provide default definitions in a separate
AutoFPGA file
@INCLUDEFILE=scope.txt Includes the scope definition

– In this way one scope configuration can define many
scope instances

Scope connections

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Interrupts

Bus connection

Scope connections

Ź

Scope
connections

Register Address

CPU Header

Simulation

Host Control

Hardware

68 / 92

For example, a scope to examine a flash controller’s debug
output might look like:
@PREFIX=flashscope Example: Examine a flash
@INCLUDEFILE=scope.txt Includes the scope definition
@TRIGGER=flash trigger Specific to flash controller
@DATA=flash data Debug data Verilog name

Register Address

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Interrupts

Bus connection

Scope connections

Scope connections

Ź Register Address

CPU Header

Simulation

Host Control

Hardware

69 / 92

We’ll also want to know the ultimate address of our core

˝ This is determined by AutoFPGA

– It’s used internally to configure the interconnect
– We also want this value in several output files

˝ The following will put these addresses into a regdefs.h file

@DEVID=SCOPE A register name prefix
@REGS.N=2 Two named addresses
@REGS.0=0 R @$(DEVID) @$(DEVID) Control address
@REGS.1=1 R @$(DEVID)D @$(DEVID)D Data address

CPU Header

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Interrupts

Bus connection

Scope connections

Scope connections

Register Address

Ź CPU Header

Simulation

Host Control

Hardware

70 / 92

To use this scope from a CPU, we’ll need to update our board
header

˝ We’ll need some values to interact with this IP
˝ The following will be copied into a board.h file

@BDEF.DEFN= Define our data structure

#i f n d e f BUSSCOPE_H

#de f i n e BUSSCOPE_H

#de f i n e BUSSCOPE_NO_RESET 0x80000000u

#de f i n e BUSSCOPE_STOPPED 0x40000000u

#de f i n e BUSSCOPE_TRIGGERED 0x20000000u

#de f i n e BUSSCOPE_PRIMED 0x10000000u

#de f i n e BUSSCOPE_TRIGGER \

(BUSSCOPE NO RESET | 0x08000000u)
#de f i n e BUSSCOPE_MANUAL BUSSCOPE_TRIGGER

#de f i n e BUSSCOPE_DISABLE 0x04000000u

// Continued next page ...

CPU Header

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Bus connection

Interrupts

Bus connection

Scope connections

Scope connections

Register Address

Ź CPU Header

Simulation

Host Control

Hardware

71 / 92

Our design structure consists of two memory addresses: a control
register and a data register. Let’s define a structure containing
these.

// Continued ...

typedef s t r u c t BUSSCOPE S {

uns igned s c t r l , s data ;
} BUSSCOPE;
#end i f

We need to know one more piece: where to find this scope in
memory
@BDEF.OSVAL= Define our memory’s base address

s t a t i c v o l a t i l e BUSSCOPE * const @$ (PREFIX)

= ((BUSSCOPE *)@$ [0x%08x](REGBASE));

Simulation

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Ź Simulation

Host Control

Hardware

72 / 92

Host Control

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Ź Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

73 / 92

Data Capture

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Ź Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

74 / 92

Using our debugging bus, it’s easy to capture the data from this
scope

// Wait for the scope collection to stop

wh i l e ((m fpga -> r ead i o (R SCOPE)
& BUSSCOPE STOPPED)==0)

;

// Allocate memory

uns igned * scopdata = new uns igned [(1<<LGMEM)];

// Read the data from the FPGA

// Reference lesson 1 on the debugging

// bus for more info

m fpga -> readz (R SCOPED, (1<<LGMEM), scopdata);

Data Output

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Ź Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

75 / 92

The easy way to output this data is just to write it to the console

f o r (i n t k=0; k<(1<<LGMEM); k++) {

p r i n t f ("%4d: 0x%08x\n", k, scopdata [k]);

While I’ve debugged data like this, the resulting output is a
challenge to work with

Data Decoding

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Ź Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

76 / 92

You can also adjust this output for your purposes

˝ Imagine your data contained Wishbone bus information
˝ It might help to decode this to make it more readable
˝ Key requirement: Line your fields up in columns for easier

readability

f o r (i n t k=0; k<<(1<<LGMEM); k++) {

p r i n t f ("%4d: 0x%08x %s %s %s\n",
k, scopdata [k],
(scopdata [k] & 0x8000) ? "CYC":" ",

(scopdata [k] & 0x4000) ? "STB":" ",

(scopdata [k] & 0x2000) ? "WE":" ");

This is better, but it’s still a challenge

VCD Generation

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

Ź VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

77 / 92

If we want to view our trace in GTKWave, we’ll need to write a
VCD file

˝ VCD files aren’t that hard to write
˝ They’re just text files
˝ Basic components

1. File Header

– Data Definitions

2. Data section consists of repeated sections of:

– Clock time
– Data lines: (Value) (Data)

˝ Let’s look at each piece in turn

VCD Header

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

Ź VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

78 / 92

For the first part, we need just three lines

˝ The first just identifies the program creating the VCD file

$version Generated by MyBusScope $end

˝ The next line identifies when the file was created

– We can use ctime() to create this string

$date Mon xx Mon Year HH:MM:SS xM xxT $end

˝ The last line tells the viewer what time scale we are using

$timescale 1ns $end

– This says that all of the times we generate will be in
nanoseconds

– If you had a reason to, you could also use 1ps, 10ns, etc.

VCD Header

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

Ź VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

main()

Hardware

79 / 92

A fourth line is useful, but optional

$timezero <TriggerTime > $end

˝ <TriggerTime> here is the internal file time of the trigger
˝ This is (really) optional, but I like using it to identify where

the trigger took place for easier viewing

VCD Data Definition

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

Ź

VCD Data
Definition

VCD Data Lines

ScopeCls

main()

Hardware

80 / 92

We now need to define our data

˝ The data definition section starts with a $scope line

$scope module MyBusScope $end

VCD Data Definition

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

Ź

VCD Data
Definition

VCD Data Lines

ScopeCls

main()

Hardware

81 / 92

Data definition (continued)

˝ Signal definitions are contained in lines starting with $var

wire

˝ One signal is defined per line

– This definition has three parts: a width, an abbreviation,
and a full name

– We get to choose what abbreviation we’d like

$var wire <WID > <ABBRV > <NAME > $end

˝ For example, we’ll need to define our clock signal, the raw
data we captured, and our trigger signal

$var wire 1 xC i_clk $end

$var wire 32 xD _raw_data [31:0] $end

$var wire 1 xT _trigger $end

VCD Data Definition

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

Ź

VCD Data
Definition

VCD Data Lines

ScopeCls

main()

Hardware

82 / 92

Data definition (continued)

˝ When all definitions are complete, we’ll move up a scope and
complete the definitions section

$upscope $end

$enddefinitions $end

– This also completes the header

All that remains is to fill our data file with values

VCD Data Lines

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

Ź VCD Data Lines

ScopeCls

main()

Hardware

83 / 92

There are two types of data lines

˝ Time lines

– These start with a # followed by a number specifying the
time within the collect.

– For a 10ns clock, these times might be #0, #10, #20,
etc.

#10

˝ Data lines: (Next page)

VCD Data Lines

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

Ź VCD Data Lines

ScopeCls

main()

Hardware

84 / 92

There are two types of data lines

˝ Time lines
˝ Data lines: Here again there are two types

– Binary (1,0) data lines contain the value followed by the
abbreviation

1xC

1xT

– Wider data lines begin with a b, followed by (width) digits
of (1,0), then the signal’s abbreviation

b01101100111101111000101011010100 xD

VCD Data Lines

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

Ź VCD Data Lines

ScopeCls

main()

Hardware

85 / 92

There are two types of data lines

˝ Time lines
˝ Data lines: Binary and wider
˝ Values not defined in any given time step keep their value

from the prior timestep
˝ To make the clock look right, you’ll need to have a time step

where it’s high, and another where it’s low

#15

0xC

˝ Time lines must be in sorted order, you can’t go backwards!

ScopeCls

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

Ź ScopeCls

main()

Hardware

86 / 92

I have a C++ SCOPE class I use for this purpose

˝ To use, first create your own class inheriting from it

c l a s s MYSCOPE : pub l i c SCOPE {

pub l i c :
MYSCOPE(DEVBUS * fpga , uns igned addr)

: SCOPE(fpga , addr ,
f a l s e , // Compressed?

t rue) {};

v i r t u a l vo id d e f i n e t r a c e s (vo id);
}

˝ Four parameters need to be defined

1. The first is a pointer to the DEVBUS interface

https://github.com/ZipCPU/wbscope/blob/master/sw/scopecls.h

ScopeCls

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

Ź ScopeCls

main()

Hardware

87 / 92

I have a C++ SCOPE class I use for this purpose

˝ To use, first create your own class inheriting from it
˝ Four parameters need to be defined

1. The first is a pointer to the DEVBUS interface
2. The second is the address of the scope’s bus interface
3. The third is an option for a compressed scope. We’ll just

set this to false for now.
4. The final option controls if readz() or readio() is used.

– readz() (true) is faster, and to be preferred

Ź readz() reads multiple items at a time
Ź All items are read from the same address

– readio() is often easier to get working first

Ź readio() reads one item at a time

https://github.com/ZipCPU/wbscope/blob/master/sw/scopecls.h

ScopeCls

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

Ź ScopeCls

main()

Hardware

88 / 92

You’ll then need to override the define traces() method

˝ To override define traces(): Define each component of
your incoming data value, give it a name, a width, and the
bit it starts from

vo id d e f i n e t r a c e s (vo id) {

r e g i s t e r t r a c e ("signame", 1, 30);

r e g i s t e r t r a c e ("sigtwo", 2, 28);

r e g i s t e r t r a c e ("third", 4, 24);

// etc.

}

main()

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Data Capture

Data Output

Data Decoding

VCD Generation

VCD Header

VCD Data Definition

VCD Data Lines

ScopeCls

Ź main()

Hardware

89 / 92

A simple main program is all that remains to use this

FPGA *m fpga;

i n t main(i n t argc , char ** argv) {

FPGAOPEN(m fpga); // Connect to FPGA/sim

MYSCOPE * scope = new MYSCOPE(m fpga ,
R SCOPE);

i f (! scope -> ready ()) {

p r i n t f ("Scope hasn\’t stopped yet\n");
} e l s e

scope ->wr i tevcd ("trace.vcd");
}

Hardware

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Ź Hardware

Build it!

Compression

90 / 92

Build it!

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

Ź Build it!

Compression

91 / 92

You should now be able to include this scope into any design

˝ Add a scope to your wavetable design
˝ Does the resulting waveform look like a sine wave?
˝ Is it at the right frequency?
˝ If not, then why not?

Compression

Lesson Overview

Project

Design

AXI-Lite notes

Formal Verification

AutoFPGA

Simulation

Host Control

Hardware

Build it!

Ź Compression

92 / 92

Waveform traces can become really long

˝ Our demo does nothing to compress the data it collects
˝ A simple run-length compression isn’t that hard to build

– Clear bit 31 if bits 30-0 contain data
– Set bit 31 to indicate the last value is repeated

1+data[30:0] times

˝ Now you can debug crazier things:

– SPI Flash devices
– Serial ports

Ź GPS data streams
Ź Does the GPS PPS come before, or after, the time

given in the serial port?

– I2C interactions, such as HDMI EDID ports

https://zipcpu.com/blog/2020/08/31/run-length-encoding.html

	
	Lesson Overview
	Project
	A Scope
	Uses for a scope
	Vendor bugs
	A Bus Scope
	Achille's Heel
	Project Structure
	Design Requirements
	CPU Debugging
	Trigger Requirements
	Design Requirements

	Design
	State Machine
	Basic Scope Design
	Scope Design
	Bus Interface
	Internal Reset
	Trigger Control
	Holdoff
	Control Register
	Reading Data
	Bus Reads
	Interrupts

	AXI-Lite notes
	AXI Differences
	Back-Pressure

	Formal Verification
	Property Files
	Contract Checks
	Induction Checks
	Induction Checks
	Do not pass Go

	AutoFPGA
	Bus connection
	Interrupts
	Bus connection
	Scope connections
	Scope connections
	Register Address
	CPU Header

	Simulation
	Host Control
	Data Capture
	Data Output
	Data Decoding
	VCD Generation
	VCD Header
	VCD Data Definition
	VCD Data Lines
	ScopeCls
	main()

	Hardware
	Build it!
	Compression

