3. Tone Generation

GissequiSt Daniel E. Gisselquist, Ph.D.

Technology, LLC

—_JW._

(:1-|- Lesson Overview

= Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Objective: Building a basic memory mapped peripheral

O

O

Build a register controlled bus slave

With multiple simple registers per slave

Output an audio sine wave

Hardware:

O

a

|

To build this project in hardware, you will need . ..
A 1-bit audio amplifier
An FPGA board with serial port control

We'll build off of the AutoFPGA demo from last time

2 /81

https://store.digilentinc.com/pmod-amp2-audio-amplifier/
https://github.com/ZipCPU/autofpga-demo

(:1-|- Work in Progress

> Leson oveview | RIS lesson Is currently a work in progress.

Tone Generator

Debugging "”’l’,‘

AutoFPGA

Hardware

Simulation

COMING SOON!?!
VST I IFTIIs 4

It will remain so until ...

o |'ve added illustrations, and example course material
o |'ve built the design myself

3 /81

Lesson Overview

= Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Tone Generator

4 /81

2| Audio Pipeline

Lesson Overview

Tone Generator

> Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Sound processing typically takes place at 200kHz or less
o Most FPGAs run at 20MHz or more

— | typically run at 100Mhz
o We'll need to slow our logic down to process sound
Sound timing is often determined by a sample clock

o This can come from an external source, asynchronous to our
system clock
o We'll be at the beginning of the sound processing chain, so

— We can generate our own sample clock
- We'll use 48kHz

The rule: Logic only steps forward once every 1/48kHz

5 /81

(:1-|- Clock Enables

Lesson Overview

Tone Generator

Audio Pipeline
= Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

The rule: Nothing moves forward except on a clock enable

o Let's let audio_ce be our audio clock enable signal

always @(posedge i_clk)
if (i_reset)
// Clear pipeline
else if (audio_ce)
// Pipeline data processing

// else
// * NOTHINGx

AutoFPGA

Formal Verification

Simulation

Hardware

6 / 81

(:1-|- Clock Enables

Lesson Overview

Tone Generator

Audio Pipeline
= Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

O

The rule: Nothing moves forward except on a clock enable

You may eventually come across operations that take more
work than can be done in one sample clock

— You can then violate this rule
~ Examples: this FFT, or some filters

— Do so with care: your core will then become dependent
on the clock periods between sample clocks
— This has consequences when it comes to reuse

Our work today will (mostly) follow this rule

7 /81

https://zipcpu.com/dsp/2018/10/02/fft.html
https://zipcpu.com/dsp/2018/05/17/slowsymf.html
https://zipcpu.com/blog/2020/01/13/reuse.html

(:1-|- Enable Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables
Enable
= Generation

Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

O

We'll need to generate a clock enable

Much like we did for the 1PPS in the beginner's tutorial
o We'll use a fractional clock divider for accuracy

AutoFPGA

parameter real SAMPLE_RATE_HZ = 48.0e3; // 48 kH:z

parameter [31:0] CLOCK_STEP =
SAMPLE_RATE_HZ * 4.0 x (1<<30)
* 1.0 / CLOCK_RATE_HZ;

reg [31:0] srate_counter;
always @(posedge i_clk)

audio_ce, srate_counter
{
<= srate_counter + CLOCK_STEP:

Formal Verification

Simulation

Hardware

8 / 81

(:1-|- Enable Generation
W|in

In case this looks unfamiliar

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables
Enable

= Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

parameter real SAMPLE_RATE_HZ = 48.0e3; // 48 kHz
parameter [31:0] CLOCK_STEP =

SAMPLE_RATE_HZ * 4.0 x (1<<30)
* 1.0 / CLOCK_RATE_HZ;

AutoFPGA

Formal Verification

Simulation

Hardware

O

O

O

a

30 SAMPLE_RATE_HZ
CLOCK_RATE_HZ

By itself, 1<<32 will overflow any 32-bit integer
1<<31 is the maximum unsigned negative integer

We want to calculate 2

— Not what we want

Multiplying by 4.0 converts 1<<30 to a real number

— Specifically, it converts it to 232

9 / 81

(:1-|- Enable Generation
W|in

Lesson Overview We'll need to generate a clock enable

Tone G : : : : , :
one menes o Much like we did for the 1PPS in the beginner’s tutorial
udio Pipeline

Clock Enables o We'll use a fractional clock divider for accuracy

Enable

= Generation - , -
oo o — 32'bits will achieve 25mHz precision (that's milli-Hz)

Table Size — Con: Phase noise

Sinewave Generation

g"i:j’i‘(;i‘;de ~ Clocks per enable will appear to jump between
DSP Rules {fSYSCLKJ and {fSYSCLKJ + 1 clocks

Lag JSAMPLE JsAMPLE

Output . .

o, o Integer clock dividers may work as well

PWM _ _

PDM — Con: Fewer potential frequency choices

Delta-Sigma

S ~ Just how many clocks per enable would generate a
e EREA 48kHz enable from a 100MHz system clock?
Formal Verification > HOW abOUt d 5OM HZ SyStem ClOCk? 25MHZ?
Simulation

Hardware

10 / 81

-I Tone generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables
Enable
= Generation

Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

Imagine a big sinewave lookup table

> 2N entries

o Let's assume for now that N — oo
l.e. N is really big

o Where 2"V entries captures one wavelength in the table
If we knew the phase of our sinewave

o We could look up the sine from the table

always @(posedge i_clk)
if (audio_ce)
sin <= sintable[phase];

AutoFPGA

Formal Verification

Simulation

Hardware

We could then adjust our phase to generate a tone

11 / 81

(:1-|- Phase

Lesson Overview

Tone Generator

From one sample to the next, the phase would step forwards

Audio Pipeline

Clock Enables
Enable
= Generation

Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

always @(posedge i_clk)
if (audio_ce)
phase <= phase + r_frequency_step,;

AutoFPGA

Formal Verification

Simulation

Hardware

o phase will automatically wrap at the end of one wavelength

o Checking for rollover at 360 degrees or 27 radians
is no longer required

How should we set r_frequency_step?

12 / 81

https://zipcpu.com/dsp/2017/06/15/no-pi-for-you.html

Gl

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
= Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

If r_frequency_step =

O

a

O

16N
22

Two steps will span the whole table before wrapping
Can create outputs 1, -1, 1, -1, 1, -1

VS T T TIITIT4

COMING SOON!?!
VS T T IVIrs A

This will generate a tone at the 1/2 our sample rate
This is also called the Nyquist frequency

13 / 81

Gl

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
= Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

If r_frequency_step =

O

a

16N
22

Two steps will span the whole table before wrapping
Can create outputs 1, -1, 1, -1, 1, -1

VS T T TIITIT4

COMING SOON!?!
VS T T IVIrs A

(or possibly 0,0,0,0 — see a DSP text)
This will generate a tone at the 1/2 our sample rate
This is also called the Nyquist frequency

i

13 / 81

Gl

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
= Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Frequency Step ‘/\/\/‘

If r_frequency_step = %QN

O

a

a

O

VS T T IV IIrs 4

Four steps will span the whole table before wrapping
Each step will advance a quarter of the way through the table
Will create outputs 0, 1, 0,-1,0,1,0,-1,0, 1,0, -1
This will generate a tone at the 1/4 our sample rate

VS T IV IFTIrs i

14 / 81

(:1-|- Frequency Step
e

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
= Frequency Step
Table Size

Sinewave Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

If r_frequency_step = %QN

o Eight steps will span the whole table before wrapping
o Each step will advance one eigth of the way through the table

o WIll create outputs 0, \F, 1, \f , 0, —i -1, \f , 0,
This will generate a tone at the 1/8 our sample rate

I’IIIIIIIJ

COMING SOON!?
VS T I IFTIrs i

Seeing a pattern?

15 / 81

-I- Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
= Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

If r_frequency_step = k2%, for 0 < k < %
o We'll generate a tone at k times our sample rate

— If f, =48 x 10°
— The generated tone will be at & f

But how many entries should be in our table?

16 / 81

(5] Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

What happens when the table size is smaller than 2%7

o There would be more phase bits than table entries

VS T VIV IIrs 4

COMING SOON!?!
VST I ITIII4

17 / 81

2| Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Suppose the table size is 2

o We'd then approximate the sine wave by a square wave

VT I FIrsrsd

COMING SOON?!
VI T ITIFIrsrsid

At what cost?

o We could skip the table lookup logic
o Just use the top bit of our phase

Whether this is “good enough” is application dependent

o I've used 1-bit tones for PLL inputs
o Old fashioned video games used to use 1-bit audio

18 / 81

2| Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Suppose the table size is 4

VS T T ITIIrI 4

COMING SOON!?
VST I ITIII4

This is better

19 / 81

(5] Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Suppose the table size is 8

VS T T ITIIrI 4

COMING SOON!?
VST I ITIII4

This is even better yet

i

20 / 81

(5] Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Suppose the table size is 16

VS T T ITIIrI 4

COMING SOON!?
VST I ITIII4

Cost?

o 1LUT/bit, nearly free on iCE40s

i

21 / 81

(5] Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Suppose the table size is 64

VS T T ITIIrI 4

VS T I IFTIrs i

Cost?

O

LLUT /bit, nearly free on Xilinx chips

22 / 81

(5] Table Size

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Suppose the table size is 256

VS T T ITIIrI 4

VS T I IFTIrs i

Cost?

O

1 Slice/bit (4 LUTs), still quite cheap on Xilinx chips

23 / 81

(2] Guru Meditation

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
= Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

The success of a given table size can be quantified

o Maximum error in time

Max Err = max sin (2nt) — TBL [QNtJ

o<t<l1

o Maximum spur energy in frequency

— Measure the Fourier Series of one wavelength of the table

1
Fy(n) = L TBL [2Vt| e 772" dt

— Look for the largest distortion

Max Spur Energy = max
n

24 / 81

-I Sinewave Generation

Lesson Overview Several techniques for generating sine waves in hardware

Tone Generator 1

Audio Pipeline Just use the most significant phase bit

Clock Enables
Enable Generation - Chea p and easy

Frequency Step o Works nicely for PLLs
Table Size

Sinewave o Can be used to generate FM signals near 100MHz

= Generation . . .
Magnitude o It might be good enough for your application

Bitwidth

DSP Rules — Old-fashioned arcade games used something similar
Lag
Output
1'bit

PWM
PDM
Delta-Sigma

o Not good enough for quality audio

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

25 / 81

GI Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size

Sinewave
= Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Several techniques for generating sine waves in hardware

1.
2.

Just use the most significant phase bit
Table lookup

o Fairly cheap for 2% < 512.

— Still fairly low logic
— Larger sizes will use (precious?) block RAM resources

o Quality might be “good enough”

o Only generates a single amplitude

o A 4096 point table can achieve —70dB maximum spur
energy

26 / 81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html

-I Sinewave Generation

Lesson Overview Several techniques for generating sine waves in hardware

Tone Generator 1

oo it Just use the most significant phase bit
udio Pipeline
Clock Enables 2. Table lookup
Enable Generation
3. CORDIC

Frequency Step
Table Size

Sinewave o Very well known approach
= Generation . ..
Magnitude o Doesn’t use any multiplies
Bitwidth : .
e 0 Can- be made arbitrarily good |
Lag o Logic usage becomes very expensive
Output
1bit — For high precision
PWM . . .
. — Especially when pipelined
Delta-Sigma Sequential implementations can be much lighter
Debugging
AutoFPGA

Formal Verification

Simulation

Hardware

27 / 81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

-I Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size

Sinewave
= Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Several techniques for generating sine waves in hardware

1.
2.
3.

Just use the most significant phase bit

Table lookup
CORDIC

o Produces both sine and cosine outputs
o Adjustable amplitude output

— Result multiplies incoming value by sine/cosine
— Algorithm introduces an additional scale
— The internal scale factor may need compensation

28 / 81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

-I Sinewave Generation

Lesson Overview Several techniques for generating sine waves in hardware
T G . . .
one menes 1. Just use the most significant phase bit
udio Pipeline
Clock Enables) Ta ble |OOkUp
Enable Generation
Frequency Step 3 CO RD I C
Table Size 4. Table + linear interpolation

Inewave
> Generation . .
Memnde o Requires a multiply
Bitwidth :
b o Can greatly improve upon raw table lookups
Lag o Table can be built to ...
Output
1'bit — Acheive lowest sidelobe performance, or
PWM
BDM — Achieve minimum maximum error in time
Delta-Sigma]]]
Sebuset o A 64 point table can achieve —70dB maximum spur
ebugging

AutoFPGA energy

Formal Verification

Simulation

Hardware

29 / 81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

-I Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size

Sinewave
= Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Several techniques for generating sine waves in hardware

OO s W

Just use the most significant phase bit
Table lookup

CORDIC

Table + linear interpolation

Table + quadratic interpolation

a

O

O

Requires a two multiplies and several steps
16 point table = —70dB maximum spur energy
64 point table = —180dB maximum spur energy

30 / 81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html
https://github.com/ZipCPU/cordic/blob/master/rtl/quadtbl.v

-I Sinewave Generation

Lesson Overview Several techniques for generating sine waves in hardware

Tone Generator

Just use the most significant phase bit
Table lookup

CORDIC

Table + linear interpolation

Table + quadratic interpolation

Higher order approximations are possible

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size

Sinewave
= Generation

Magnitude
Bitwidth
DSP Rules
Lag o But are they really necessary?
Output

1'bit

PWM

PDM

Delta-Sigma

S o1k

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

31/ 81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html
https://github.com/ZipCPU/cordic/blob/master/rtl/quadtbl.v

-I Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size

Sinewave
= Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

WeEe'll use the basic table lookup method
o Building a lookup table is covered in the beginner’s tutorial

— You are welcome to build your own
— My own example of sintable.v is also available
This coregen can make designs for arbitrary bit-widths

always @(posedge i_clk)
if (audio_ce)
sin <= sin_table[phase[31:20]];

AutoFPGA

Formal Verification

Simulation

Hardware

Link: More advanced sinewave generators

32 /81

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/tutorial
https://github.com/ZipCPU/cordic/blob/master/rtl/sintable.v
https://github.com/ZipCPU/cordic
https://github.com/ZipCPU/cordic

(3] Magnitude Adjustment

i

Lesson Overview We'd like to be able to control how loud our tone is
IZZTOG:;Z?;S o Multiply the table output by a scale factor
Clock Enables
Sitelalfe EErerien reg signed [15:0] sin, sample;
Frequency Step .
o e reg signed [16:0] r_scale;
Sinewave Generation reg signed [320] Scaled;
= Magnitude
Bitwidth
DSP Rules always @(posedge i_clk)
(L)ag if (audio_ce)
utput
ot sin <= sintable[phase[31:20]];
PWM
PDM :
A z.zllways @(posedge i_clk)
. if (audio_ce)
Debugging h
begin
AutoFPGA .
For 1 Verificat scaled <= sin *x r_scale;
o sample <= scaled[32:16];
Simulation
end
Hardware

33 /81

(5] Bitwidth

i

Lesson Overview Bit widths must be carefully tracked in fixed bit math

IZZTOG;';Z‘;’:S o Adding two numbers increases the bit width by one over the
Clock Enables largest incoming bit width

Efeaqﬂ;fjn;r::on o Multiplying two numbers creates a result having the width of
LEL]e S the sum of the two numbers

Sinewave Generation

poenuee — Beware of multiplying signed with unsigned numbers

DSP Rules — To make r_scale signed, we'll need to keep the MSB clear
Lag

Output In our case

1'bit

i‘[’)\’&/' o We'll let our table have 16-bits, r_scale with 17-bits

Delta-Sigma | scaled will then have 33—bItS

Debugging o The sample result will then have 16-bits again

AutoFPGA o r_scale will scale the result from full scale to zero

Formal Verification

Simulation

Hardware

34 / 81

2l DSP Rules

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

= DSP Rules
Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Many FPGAs have hard multiply accelerators

O

d

a

These are often called DSPs
Without hard DSP blocks

— The synthesizer will try to pack all the multiplication logic
in one clock cycle

— This will consume a lot of logic

— This may likely keep you from meeting timing as well

If your FPGA doesn’t have any DSPs, you may need to build
an alternative

— See here for a low-logic example

As an engineer, you will need to manage DSP usage

Let's look at some rules to guarantee DSP allocation

35 / 81

https://github.com/ZipCPU/zipcpu/blob/master/rtl/core/slowmpy.v

2l DSP Rules

Lesson Overview Rules for DSP usage

T G . . .

one menes 1. Always mark both operands as either signed or unsigned
udio Pipeline

Clock Enables . .

Enable Generation reg S|gned []- 5 : O] S1n,

Frequency Step reg signed [16:0] r_scale;

Table Size

Sinewave Generation

Magnitude .

St o Most math operations produce the same result

L> DSP Rules independent of any operand sign: add, subtract, and, or,
ag

Output XOr, etc

1'b|t

oy o Multiplication is a key exception to this rule

PDM o Bit concatenations create unsigned values

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

36 / 81

(5] DSP Rules

i

Lesson Overview Rules for DSP usage

Tone Generator 1

I Always mark both operands as either signed or unsigned
Clock Enables 2. Like memories, keep the logic blocks sparse

Enable Generation
Frequency Step
Table Size

o Follow this form

az:;z:fe”eratb" always @(posedge i_clk)

Bitwidth if (CE) // Put nothing else in this
LDDSPR”'GS A<=X=xY; // logic block
ag

Output .

1'bit o Some hardware architectures allow an accumulate as well
PWM

PDM always @(posedge i_clk)

Delta-Sigma i f (CE)

Debugging A e X % Y ‘I‘ C,

AutoFPGA

EEIR W T o Know what your hardware supports

Simulation

Hardware

37 / 81

(5] DSP Rules

Lesson Overview Rules for DSP usage

Tone Generator 1

I Always mark both operands as either signed or unsigned
Clock Enables 2. Like memories, keep the logic blocks sparse

Enable Generation .
Frequency Step 3. Resets should be kept external to the multiply
Table Size

Sinewave Generation o If you need a reset, reset the result on the next clock
Magnitude

Bitwidth initial { result, r_clear } = 1;
LZDSP Rules always @(posedge i_clk)

Output if (i_reset)

Lot { result, r_clear } = 1,;
PWM .

POM else if (r_clear)

Delta-Sigma { result, r_clear } = 0,
Debugging else

AutoFPGA result <= multiply_output;
Formal Verification

Simulation

Hardware

38 / 81

2l Lag

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

> Lag

Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

In many DSP applications, lag must only be bounded

o us processing delays are irrelevant
o At 20 ms, delays start to become relevant

My point:

Taking a couple of clocks to clear the pipeline won't hurt

39 / 81

_I- Output

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

= Output

1'bit

PWM

PDM
Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Our chosen hardware requires a one-bit audio output

o We need to drive this bit fom our hardware
o You may wish to use some of your registers to control power
and amplifiers

Ex. The Pmod AMP2 has two amplifier controls to adjust:
o_shutdown_n and o_gain

Four possibilities we'll consider to drive one audio bit

o 1'bit, using the MSB of our sample
o Pulse width modulation (PWM)

o Pulse density modulation (PDM)
o Delta Sigma modulation

40 / 81

https://store.digilentinc.com/pmod-amp2-audio-amplifier/
https://store.digilentinc.com/pmod-amp2-audio-amplifier/

Gl 1bit

Lesson Overview

Tone Generator

Easiest output solution: just produce top bit of every sample

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

> 1'bit

PWM

PDM
Delta-Sigma

Debugging

always @(x*)
o_audio = o_sample[15];

AutoFPGA

Formal Verification

Simulation

Hardware

It works, but ...

o No way to adjust volume
o Not a pleasant sound

— Equivalent to using a 1-bit sign table
We can do a lot better

41 / 81

(5] pwm

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size

Sinewave Generation

Magnitude
Bitwidth
DSP Rules
Lag

Output

1'bit

= PWM
PDM
Delta-Sigma

Debugging

i

Pulse Width Modulation (PWM)

o We could set o_audio on the first (o_sample + %) M of every

M clock periods

o Need to adjust the range of o_sample

— Needs to be unsigned
— Instead of a range from —32,768,...,32,767
— Flip the MSB, to get a range from 0,...,65,535

AutoFPGA

Formal Verification

Simulation

always @(posedge i_clk)
pwm_counter <= pwm_counter + 1;

always @(posedge i_clk)
o_audio <= (pwm_counter >=
{ 'o_sample[15], o_sample|[14:0] });

Hardware

42 / 81

(5] pDM

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

= PDM
Delta-Sigma

Debugging

Pulse Density Modulation (PDM)

O

O

O

We could scramble which bits are set
Reverse the order of bits in the pwm_counter
Pushes the distortion to higher frequencies

i

AutoFPGA

Formal Verification

genvar k;

generate for(k=0; k<PWM_BITS; k=k+1)

begin

brev_counter [k] = pwm_counter [PWM_BITS—1-k]|;

end endgenerate

always @(posedge i_clk)
o_audio <= (brev_counter >=

({

lo_sample[15], o_sample[14:0]

)

Simulation

Hardware

43 / 81

-I- Delta-Sigma

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

> Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Delta Sigma modulation

O

d

O

A formalized approach to PDM
Can get a lot more complicated
There's a lot of math behind this

Delta-Sigmal modulator is a control loop w/ feedback
First, second, and third order loops are possible

44 / 81

G-I- Delta-Sigma

Lesson Overview

Tone Generator

Audio Pipeline
Clock Enables
Enable Generation
Frequency Step
Table Size
Sinewave Generation
Magnitude
Bitwidth

DSP Rules

Lag

Output

1'bit

PWM

PDM

> Delta-Sigma

Debugging

Delta Sigma modulation

o A simple, first-order, delta-sigma modulator

reg [15:0] ds_counter;

always @(posedge i_clk)
{ o_audio, ds_counter }
<= ({ 'o_sample[l5], o_sample|[14:0] }
+ ds_counter;

AutoFPGA

Formal Verification

Simulation

Hardware

We want high frequency, so we dropped the clock enable
The carry from the addition is our output
It's also naturally removed from the sum

O

O

|

— This is the delta in delta-sigma modulation
— The sum forms the sigma

45 / 81

Lesson Overview

Tone Generator

= Debugging

Debug visually
Octave script
Debug clock gating

AutoFPGA

Debugging

Simulation

Hardware

46 / 81

(3] Debug visually

Lesson Overview

Tone Generator

Debugging

> Debug visually
Octave script
Debug clock gating

AutoFPGA

DSP is most easily debugged with pictures and graphs

o Step one: write the data to an external file

Formal Verification

Simulation

Hardware

FILE xfp = fopen("dumpfile.16t", "w");

/S
while (/> ... */) {
/S
tick () ;
if (m_core->o0_audio_ce) A
fwrite (&m_core->o0_sample,
sizeof (short), 1, fp);
// May mneed to fflush this <if fp
// might be unexpectedly closed
fflush (fp); // ... your call
+
| V4

fclose (fp);

47 / 81

(:1-|- Octave script

Lesson Overview

Tone Generator

Debugging

Debug visually
> Octave script
Debug clock gating

AutoFPGA

DSP is most easily debugged with pictures and graphs

o Matlab or Octave can really help here

You can then create an m-file script

i

Formal Verification

Simulation

Hardware

fid = fopen('dumpfile.16t’, r");

data= fread (fid ,
fclose(fid);

plot(data);

inf |

"intlét ') ;

48 / 81

https://www.gnu.org/software/octave

(:1-|- Debug clock gating

Lesson Overview

Tone Generator

To gate on the clock enables or not?

i

Debugging

Debug visually
Octave script

Debug clock
> gating

AutoFPGA

if (m_core->0_audio_ce) // <-- gate here?
fwrite (4m_core->0_sample,
sizeof (short), 1, fp);

Formal Verification

Simulation

Hardware

Pro: Minimizes the data that needs to be examined

O

— Useful if signals violate the clock enable rule(s)
— Also if the clock enables aren’t consistent

Con: Might hide important events w/in your design
Con: Relating multiple signals can be a challenge

O

|

— Challenging example: resamplers

Whether or not you gate your output on audio_ce is a design

decision

49 / 81

Lesson Overview

Tone Generator

Debugging

> AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn

Makefile
Simulation tick
Top level 1/0s

Formal Verification

Simulation

Hardware

AutoFPGA

50 / 81

-I Bus connection

Lesson Overview

Tone Generator

Debugging

AutoFPGA

= Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
Top level 1/0s

Formal Verification

Simulation

Hardware

Let's connect this design to our bus

o We'll give it four registers

1.

2.
3.
4

Frequency step
Scale factor

(Reserved for your curiosity)
(Reserved)

51 / 81

(2] DOUBLE slave

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

= DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
Top level 1/0s

Formal Verification

Simulation

Hardware

We'll use the AutoFPGA SLAVE.TYPE=DOUBLE

O

d

O

Like SINGLE, DOUBLE uses a simplified bus interface
DOUBLE slaves can have multiple registers
Not allowed to stall the bus

i

always @(x)

o_wb_stall = 1'b0;

Require a single clock to generate any responses

initial o_wb_ack = 1'b0:;
always @(posedge i_clk)

o_wb_ack <= li_reset & & i_wb_stb:

52 / 81

(:1-|- Bus writes

Lesson Overview

Tone Generator

Debugging

AutoFPGA

The rest of the bus logic is straight forward

o We'll need to set our control registers

i

Bus connection
DOUBLE slave
= Bus writes
Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
Top level 1/0s

Formal Verification

Simulation

always @(posedge i_clk)

if (i_wb_stb && i_wb_we)

case(i_wb_addr)

2'b00: r_frequency_step <= i_wb_data;

2'b01: r_scale <= { 1'b0, i_wb_data[15:0] };
2'b10: begin end // Your option

2'bl1l: begin end // Your option

endcase

Hardware

We can ignore the i_wb_sel lines

o Writing bytes or halfwords will produce undefined behavior

o This is not uncommon in digital design

53 / 81

(:1-|- Bus reads

Lesson Overview

Tone Generator

Debugging

AutoFPGA

The rest of the bus logic is straight forward

o Also want to be able to read our control registers

i

Bus connection
DOUBLE slave
Bus writes

= Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
Top level 1/0s

Formal Verification

always @(posedge i_clk)

case(i_wb_addr)
2'b00: o_wb_data <=
2'b01: o_wb_data <=
2'bl0: o_wb_data <=
2'bll: o_wb_data <=
endcase

r_frequency_step;
{ 16'h0, r_scale };
0; // Your option
0; // Your option

Simulation

Hardware

54 / 81

(3]l AutoFPGA config
W|in

Lesson Overview WEe'll also need an AutoFPGA configuration file
Tone Generator @PREFIX=t Onegen
Debugging ONADDR=4 Number of slave addresses
AutoFPGA @SLAVE.BUS=wb Connect to bus named wb
Bus connection
DOUBLE slave @SLAVE.TYPE=DOUBLE
E“S W“:‘-S @MAIN.PORTLIST= Define a design port
Df;:f?';PGA o_audio_ce, o_sample, o_audio
Register defn
e @MAIN.IODECL= Declare our outputs
Top level 1/0s 5 .

output wire o_audio_ce;
Formal Verification .

output wire [15:0] o_sample;
Simulation = .

output wire o_audio;
Hardware

55 / 81

(3]l AutoFPGA Config

Lesson Overview

Tone Generator

Debugging

Our main level logic is inserted using the @MAIN.INSERT ta
@MAIN.INSERT= Will be copied into main.v

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA
> config

Register defn
Makefile
Simulation tick
Top level 1/0s

Formal Verification

@$ (PREFIX)
@$(PREFIX)i(i_clk, i_reset,
// Connect to the bus
@$ (SLAVE . PORTLIST),
// Connect our outgoing signals
o_audio_ce, o_sample, o_audio);

Simulation

Hardware

56 / 81

Gl

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
= Register defn
Makefile
Simulation tick
Top level 1/0s

Formal Verification

Simulation

Hardware

Register Definitions ‘/\/\/‘

We'll also tell our debug port about our registers
QREGS .N=2 Define two registers

QREGS.0=0 R_FREQUENCY FREQUENCY Reg #1

@REGS.1=1 R_AMPLITUDE AMPLITUDE Reg #2
The format of the @REGS tag:

o First field, the word offset of the register

o Then a C4++4 name for the register

o Finally, a user name (wbregs) for the register

o Additional names, if present, are additional usernames
(aliases) for the same register

You can add more definitions if you choose to define more
registers

57 / 81

2| Makefile

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn

= Makefile
Simulation tick
Top level 1/0s

Formal Verification

Simulation

Hardware

If your flow uses a Makefile when processing rtl/

O

You can add tonegen.v to the list of dependencies used by

this core

ORTL.MAKE.FILES—=tonegen.v sintable.v

RTL files used

58 / 81

(5] simulation tick

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile

> Simulation tick
Top level 1/0s

Formal Verification

We'll want to add our debugging logic

O

This will be called on every tick of the clock cl1k

@SIM.CLOCK=clk
@SIM.TICK=

i

if (m_core->o0_audio_ce) {
fwrite (&m_core->o0_sample,
sizeof (short), 1, fp);
fflush (fp); // ... wyour call

Simulation

Hardware

59 / 81

(:1-|- Top level 1/0s

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
> Top level 1/0s

Formal Verification

Simulation

Hardware

What about the top level 1/Q’'s?

O

d

O

o_audio_ce is really an internal signal
As is o_sample
Without telling AutoFPGA otherwise

— @OMAIN.PORTLIST is used at the toplevel
— As is GMAIN.IODECL

i

— These will not just be outputs of our verilator simulation

— But also our top level hardware build

Solution: Define separate top level ports

60 / 81

(3] AutoFPGA Config

Lesson Overview

Tone Generator

What about the top level 1/Q’'s?

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick

> Top level 1/0s

Formal Verification

i

Solution: Define separate top level ports

QTOP.PORTLIST= List toplevel ports

o_audio ‘

QTOP.IODECL= Declare our toplevel ports

output wire o_audio;

Simulation

QTOP.DEFNS= Define toplevel wires

Hardware

wire w_audio_ce;
wire [15:0] w_sample;

QTOP.MAIN= Connect these toplevel signals to main

w_audio_ce, w_sample, o_audio

61 / 81

(5] AutoFPGA Makefile

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
> Top level 1/0s

Formal Verification

Simulation

Hardware

Last steps:

i

o Put your config, tonegen.txt, in the autodata directory

o Include tonegen.txt in the autodata/Makefile

o Place your logic, tonegen.v and sintable.v, into the rtl

directory
o Re-run AutoFPGA, make autodata
o Rebuild the rest of the project

62 / 81

2| Build problems?

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection
DOUBLE slave
Bus writes

Bus reads
AutoFPGA config
Register defn
Makefile
Simulation tick
> Top level 1/0s

Formal Verification

Simulation

Hardware

If you struggle at all to get AutoFPGA to do what you want

O

O

O

There's a -d option you can enable
This will produce an autofpga.dbg file
Shows you how the data is transformed throughout

63 / 81

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal
= Verification

Bus Slaves
Property Files
Instantiation
Induction
SymbiYosys script

Simulation

Hardware

Formal Verification

64 / 81

(:1-|- Bus Slaves

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

= Bus Slaves
Property Files
Instantiation
Induction
SymbiYosys script

Simulation

Hardware

o Formally verifying signal processing blocks can be a challénge

— We'll debug those via simulation
o Formally verifying bus slaves is easy

— A bus slave failure will hang your entire design

— Complicates debugging
— Could leave you in FPGA Hell

Always formally verify any and all bus components

o The time to get into the habit starts now

65 / 81

https://zipcpu.com/blog/2017/05/19/fpga-hell.html

(:1-|- Property Files

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

= Property Files
Instantiation
Induction
SymbiYosys script

Simulation

Hardware

The first thing you will need is a bus property file

O

O

O

Here's a Wishbone slave property file

i

Any core that passes this property check will not hang the bus

That's not the same as proving that it will work

It just won't hang the bus

66 / 81

https://github.com/ZipCPU/wb2axip/blob/master/bench/formal/fwb_slave.v

(:1-|- Instantiation

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves
Property Files
= Instantiation
Induction
SymbiYosys script

Simulation

Hardware

Instantiate this core in a formal property section of tonegen'. v

O

You'll need to set some parameters

AW=2, since we have 2 = log, 4 registers

F_MAX_STALL= 1, otherwise maximum stalls won't be checked
F_MAX_ACK_DELAY= 2, since we return all results in one cycle
F_LGDEPTH= 2, specifies that two-bit counters can be used to
keep track of the number of outstanding bursts

67 / 81

(:1-|- Instantiation

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves
Property Files
= Instantiation
Induction
SymbiYosys script

Simulation

You'll also need to capture three results from the property file

o The number of total requests that have been made,
fwb_nreqgs

o The number of total acknowledgments received, fwb_nacks

o The total number of outstanding requests, fwb_outstanding

Hardware

localparam F_LGDEPTH=2;

wire [F_LGDEPTH—-1:0| fwb_nreqs, fwb_nacks,
fwb_outstanding;

68 / 81

(:1-|- Instantiation

Lesson Overview

Tone Generator

Your code should look something like .

i

Debugging

AutoFPGA

Formal Verification

Bus Slaves
Property Files
= Instantiation
Induction
SymbiYosys script

Simulation

Hardware

localparam F_LGDEPTH=2;

fwb_slave #(.AW(2), .F_LGDEPTH(F_LGDEPTH),

F_MAX_STALL (1),
F_MAX_ACK_DELAY (2))
fwb (i_clk, i_reset,

i_wb_cyc, i_wb_stb, i_wb_we,

1_wb_data, 1_wb_sel,

o_wb_ack, o_wb_stall,

o_wb_data,

1_wb_addr,

1'b0);

69 / 81

(:1-|- Induction

Lesson Overview

Tone Generator

To pass induction, you'll need just one more property

Debugging

AutoFPGA

Formal Verification

always @(x)

if (i_wb_cyc)

assert (fwb_outstanding =— (o_wb_ack ? 1:0));

Bus Slaves
Property Files
Instantiation

= Induction
SymbiYosys script

Simulation

Beware of the definition of fwb_outstanding

assign f_outstanding = (i_wb_cyc)
? (f_nreqs — f_nacks):0;

Hardware

o It will always be zero if !i_wb_cyc, regardless of o_wb_ack
o Hence the if (i_wb_cyc) above

70 / 81

(:1-|- SymbiYosys script

Lesson Overview

Tone Generator

Wl

Debugging

AutoFPGA

Formal Verification

Bus Slaves
Property Files
Instantiation

Induction
SymbiYosys
script

Simulation

Hardware

[options]| # Place in bench/formal subdir
mode prove # Unbounded (i.e. induction) proof
depth 3

[engines]

smtbmc # The default engine

[script] # Yosys script
read —formal fwb_slave.v
read —formal sintable.v
read —formal tonegen.v
prep —top tonegen

[files] # Read files
fwb_slave.v

../../rtl/sintable.v
../../rtl/tonegen.v

71 / 81

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

= Simulation

VCD File
VCD File
Data dump
Your turn!

Hardware

Simulation

72 / 81

-I Simulation?

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File
Data dump
Your turn!

Hardware

How will you know if it works

o Before you place it on hardware?
o ...where you can no longer tell why it isn't working?

Simulation!

73 / 81

G-I- Sim Script

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File
Data dump
Your turn!

Hardware

As with your last design

o Build and run sim/main tb.cpp

main_tb -d

o While running, run

wbregs frequency 0x0258bf25
wbregs amplitude 0x0300

o T his should create a 440Hz tone
— 440Hz is an “A” above middle C

— Used extensively for tuning instruments

Let it run for several seconds, and then kill main_tb with Ctrl-C

o Open and examine the waveform

74 / 81

2| VD File

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

= VCD File
VCD File
Data dump
Your turn!

Hardware

Using GTKWave, | produced this image

Signals Waves
Time

1 _reset=l

iclk=

i _host_uart_rx=

o_host_uart_tx=

0_audio_ce=l

o_audio =l

o_sample[15:8] =

See if you can do it too

75 / 81

2| VD File

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

= VCD File
Data dump
Your turn!

Hardware

Us

ing GTKWave, | produced this image

Signals Waves

Time

i ho
o_ho

0_sa

O

1 _reset=l
i_clk=
st_uart_rx=
st_uart_tx=l
0_audio_ce=l
o_audio =l
mplel[15:8] =

Notice the poor quality o_audio

This was produced by using only the top bit of o_sample

76 / 81

(:1-|- Data dump

Lees Gvenviam You should also have a dumpfile. 16t

Tone Generator

Open it with Octave (or Matlab)

O

Debugging

How do the samples look?

O

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File
= Data dump

Your turn!

Hardware

77 / 81

https://www.gnu.org/software/octave

(:1-|- Data dump

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File
= Data dump

Your turn!

Hardware

You should also have a dumpfile. 16t

O

O

O

Open it with Octave (or Matlab)
How do the samples look?
Try using the included simscript.m to display them

i

77 / 81

https://www.gnu.org/software/octave

(:1-|- Your turn!

i

Lesson Overview Now modify your simulation to ...
Tone Generator o Bring the o_audio output pin into Octave
z::fi';'i o You'll need to filter it to get something recognizable
Formal Verification pin = % You'1ll need to set this
Simulation % Filter the incoming samples
:2BE: fltrd = conv(ones(500,1), pin);
Data dump fltrd = conv(ones(500,1), fltrd);
> Your turn! fltrd = conv(ones(500,1), fltrd);
Hardware fltrd = conv(ones(500,1), fltrd);
fltrd = conv(ones(500,1), fltrd);
fltrd = conv(ones(500,1), fltrd);
plot(fltrd);

o How does the result look?
o It should look like o_sample

78 / 81

https://www.gnu.org/software/octave

(:1-|- Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File

Data dump
= Your turn!

Hardware

Now modify your simulation to ...

O

O

Bring the o_audio output pin into Octave

You'll need to filter it to get something recognizable

i

pin = % You'll need to set this
% Filter the incoming samples
fltrd = conv(ones(500,1), pin);
fltrd = conv(ones(500,1), fltrd);

(
fltrd = conv(ones(500,1),
fltrd = conv(ones(500,1),
fltrd = conv(ones(500,1),
fltrd = conv(ones(500,1),

plot(fltrd);

fltrd):
fltrd);
fltrd);
fltrd);

How does the result look?
It should look like o_sample

— Does it?

78 / 81

https://www.gnu.org/software/octave

(:1-|- Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File

Data dump
= Your turn!

Hardware

Now modify your simulation to ...

O

O

Bring the o_audio output pin into Octave

You'll need to filter it to get something recognizable

i

pin = % You'll need to set this
% Filter the incoming samples
fltrd = conv(ones(500,1), pin);
fltrd = conv(ones(500,1), fltrd);

(
fltrd = conv(ones(500,1),
fltrd = conv(ones(500,1),
fltrd = conv(ones(500,1),
fltrd = conv(ones(500,1),

plot(fltrd);

fltrd):
fltrd);
fltrd);
fltrd);

How does the result look?
It should look like o_sample

— Does it? Can you plot the two together?

78 / 81

https://www.gnu.org/software/octave

(:1-|- Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File
VCD File

Data dump
= Your turn!

Hardware

Modify your design again so you can choose: ‘/\/\/\.

o Either the 1'bit audio output, or
o The PWM, PDM, or the Delta-Sigma output

Which is better?

You may wish to look at the FFT of your tone

freq = (Ll:length(fltrd)) ./length(fltrd);
freq = (freq — 1/2) % sample_rate;
plot(freq, fftshift(abs(fft(fltrd))));
xlabel ("Frequency (Hz)');
ylabel (' Magnitude ") ;

O

|

Or compare the FFT's of each approach against the others
Perhaps you want to adjust your design to create all four
outputs at once

a

79 / 81

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

= o Hardware

80 / 81

(5] Build it!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

> Build it!

This is the moment you've been waiting for!

O

It's now time to build your design for your board
Connect the amplifier

Is the sound at all what you expect?

Which approach "sounds” the best?

Can you create a script to play Yankee Doodle?

i

81 / 81

https://store.digilentinc.com/pmod-amp2-audio-amplifier/

	
	Lesson Overview
	Tone Generator
	Audio Pipeline
	Clock Enables
	Enable Generation
	Frequency Step
	Table Size
	Sinewave Generation
	Magnitude Adjustment
	Bitwidth
	DSP Rules
	Lag
	Output
	1'bit
	PWM
	PDM
	Delta-Sigma

	Debugging
	Debug visually
	Octave script
	Debug clock gating

	AutoFPGA
	Bus connection
	DOUBLE slave
	Bus writes
	Bus reads
	AutoFPGA config
	Register Definitions
	Makefile
	Simulation tick
	Top level I/Os

	Formal Verification
	Bus Slaves
	Property Files
	Instantiation
	Induction
	SymbiYosys script

	Simulation
	VCD File
	VCD File
	Data dump
	Your turn!

	Hardware
	Build it!

