
Gisselquist
Technology, LLC

3. Tone Generation

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

2 / 81

Objective: Building a basic memory mapped peripheral

˝ Build a register controlled bus slave

– With multiple simple registers per slave

˝ Output an audio sine wave

Hardware:

˝ To build this project in hardware, you will need . . .
˝ A 1-bit audio amplifier
˝ An FPGA board with serial port control

– We’ll build off of the AutoFPGA demo from last time

https://store.digilentinc.com/pmod-amp2-audio-amplifier/
https://github.com/ZipCPU/autofpga-demo

Work in Progress

Ź Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

3 / 81

This lesson is currently a work in progress.

It will remain so until . . .

˝ I’ve added illustrations, and example course material
˝ I’ve built the design myself

Tone Generator

Lesson Overview

Ź Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

4 / 81

Audio Pipeline

Lesson Overview

Tone Generator

Ź Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

5 / 81

Sound processing typically takes place at 200kHz or less

˝ Most FPGAs run at 20MHz or more

– I typically run at 100Mhz

˝ We’ll need to slow our logic down to process sound

Sound timing is often determined by a sample clock

˝ This can come from an external source, asynchronous to our
system clock

˝ We’ll be at the beginning of the sound processing chain, so

– We can generate our own sample clock
– We’ll use 48kHz

The rule: Logic only steps forward once every 1/48kHz

Clock Enables

Lesson Overview

Tone Generator

Audio Pipeline

Ź Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

6 / 81

The rule: Nothing moves forward except on a clock enable

˝ Let’s let audio_ce be our audio clock enable signal

always @ (posedge i_clk)
i f (i_reset)

// C l e a r p i p e l i n e
e l s e i f (audio_ce)

// P i p e l i n e data p r o c e s s i n g
// e l s e
// ∗NOTHING∗

Clock Enables

Lesson Overview

Tone Generator

Audio Pipeline

Ź Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

7 / 81

The rule: Nothing moves forward except on a clock enable

˝ You may eventually come across operations that take more
work than can be done in one sample clock

– You can then violate this rule

Ź Examples: this FFT, or some filters

– Do so with care: your core will then become dependent
on the clock periods between sample clocks

– This has consequences when it comes to reuse

˝ Our work today will (mostly) follow this rule

https://zipcpu.com/dsp/2018/10/02/fft.html
https://zipcpu.com/dsp/2018/05/17/slowsymf.html
https://zipcpu.com/blog/2020/01/13/reuse.html

Enable Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Ź
Enable
Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

8 / 81

We’ll need to generate a clock enable

˝ Much like we did for the 1PPS in the beginner’s tutorial
˝ We’ll use a fractional clock divider for accuracy

parameter r e a l SAMPLE_RATE_HZ = 48.0 e3 ; // 48 kHz
parameter [3 1 : 0] CLOCK_STEP =

SAMPLE_RATE_HZ ∗ 4 .0 ∗ (1<<30)
∗ 1 .0 / CLOCK_RATE_HZ ;

reg [3 1 : 0] srate_counter ;

always @ (posedge i_clk)
{ audio_ce , srate_counter }

<= srate_counter + CLOCK_STEP ;

Enable Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Ź
Enable
Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

9 / 81

In case this looks unfamiliar

parameter r e a l SAMPLE_RATE_HZ = 48.0 e3 ; // 48 kHz
parameter [3 1 : 0] CLOCK_STEP =

SAMPLE_RATE_HZ ∗ 4 .0 ∗ (1<<30)
∗ 1 .0 / CLOCK_RATE_HZ ;

˝ We want to calculate 232
SAMPLE RATE HZ

CLOCK RATE HZ

˝ By itself, 1<<32 will overflow any 32-bit integer
˝ 1<<31 is the maximum unsigned negative integer

– Not what we want

˝ Multiplying by 4.0 converts 1<<30 to a real number

– Specifically, it converts it to 232

Enable Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Ź
Enable
Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

10 / 81

We’ll need to generate a clock enable

˝ Much like we did for the 1PPS in the beginner’s tutorial
˝ We’ll use a fractional clock divider for accuracy

– 32’bits will achieve 25mHz precision (that’s milli-Hz)
– Con: Phase noise

Ź Clocks per enable will appear to jump between
Y

fSYSCLK
fSAMPLE

]

and
Y

fSYSCLK
fSAMPLE

]

` 1 clocks

˝ Integer clock dividers may work as well

– Con: Fewer potential frequency choices

Ź Just how many clocks per enable would generate a
48kHz enable from a 100MHz system clock?

Ź How about a 50MHz system clock? 25MHz?

Tone generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Ź
Enable
Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

11 / 81

Imagine a big sinewave lookup table

˝ 2N entries
˝ Let’s assume for now that N Ñ 8

i.e. N is really big
˝ Where 2N entries captures one wavelength in the table

If we knew the phase of our sinewave

˝ We could look up the sine from the table

always @ (posedge i_clk)
i f (audio_ce)

sin <= sintable [phase] ;

We could then adjust our phase to generate a tone

Phase

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Ź
Enable
Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

12 / 81

From one sample to the next, the phase would step forwards

always @ (posedge i_clk)
i f (audio_ce)

phase <= phase + r_frequency_step ;

˝ phase will automatically wrap at the end of one wavelength
˝ Checking for rollover at 360 degrees or 2π radians

is no longer required

How should we set r_frequency_step?

https://zipcpu.com/dsp/2017/06/15/no-pi-for-you.html

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Ź Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

13 / 81

If r_frequency_step “ 1

2
2N

˝ Two steps will span the whole table before wrapping
˝ Can create outputs 1, -1, 1, -1, 1, -1

˝ This will generate a tone at the 1{2 our sample rate
This is also called the Nyquist frequency

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Ź Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

13 / 81

If r_frequency_step “ 1

2
2N

˝ Two steps will span the whole table before wrapping
˝ Can create outputs 1, -1, 1, -1, 1, -1

(or possibly 0,0,0,0 – see a DSP text)
˝ This will generate a tone at the 1{2 our sample rate

This is also called the Nyquist frequency

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Ź Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

14 / 81

If r_frequency_step “ 1

4
2N

˝ Four steps will span the whole table before wrapping
˝ Each step will advance a quarter of the way through the table
˝ Will create outputs 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1
˝ This will generate a tone at the 1{4 our sample rate

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Ź Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

15 / 81

If r_frequency_step “ 1

8
2N

˝ Eight steps will span the whole table before wrapping
˝ Each step will advance one eigth of the way through the table

˝ Will create outputs 0,
?
2

2
, 1,

?
2

2
, 0, -

?
2

2
, -1, -

?
2

2
, 0, . . .

˝ This will generate a tone at the 1{8 our sample rate

Seeing a pattern?

Frequency Step

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Ź Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

16 / 81

If r_frequency_step “ k2N , for 0 ď k ă 1

2

˝ We’ll generate a tone at k times our sample rate

– If fs “ 48 ˆ 103

– The generated tone will be at kfs

But how many entries should be in our table?

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

17 / 81

What happens when the table size is smaller than 2N?

˝ There would be more phase bits than table entries

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

18 / 81

Suppose the table size is 2

˝ We’d then approximate the sine wave by a square wave

At what cost?

˝ We could skip the table lookup logic
˝ Just use the top bit of our phase

Whether this is “good enough” is application dependent

˝ I’ve used 1-bit tones for PLL inputs
˝ Old fashioned video games used to use 1-bit audio

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

19 / 81

Suppose the table size is 4

This is better

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

20 / 81

Suppose the table size is 8

This is even better yet

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

21 / 81

Suppose the table size is 16

Cost?

˝ 1LUT/bit, nearly free on iCE40s

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

22 / 81

Suppose the table size is 64

Cost?

˝ 1LUT/bit, nearly free on Xilinx chips

Table Size

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

23 / 81

Suppose the table size is 256

Cost?

˝ 1 Slice/bit (4 LUTs), still quite cheap on Xilinx chips

Guru Meditation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Ź Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

24 / 81

The success of a given table size can be quantified

˝ Maximum error in time

Max Err “ max
0ďtă1

sin p2πtq ´ TBL
X

2N t
\

˝ Maximum spur energy in frequency

– Measure the Fourier Series of one wavelength of the table

Fs pnq “

ż

1

0

TBL
X

2N t
\

e´j2πntdt

– Look for the largest distortion

Max Spur Energy “ max
n

ˇ

ˇ

ˇ

ˇ

Fs pnq

Fs p1q

ˇ

ˇ

ˇ

ˇ

2

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

25 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit

˝ Cheap and easy
˝ Works nicely for PLLs
˝ Can be used to generate FM signals near 100MHz
˝ It might be good enough for your application

– Old-fashioned arcade games used something similar

˝ Not good enough for quality audio

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

26 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit
2. Table lookup

˝ Fairly cheap for 2N ă 512.

– Still fairly low logic
– Larger sizes will use (precious?) block RAM resources

˝ Quality might be “good enough”
˝ Only generates a single amplitude
˝ A 4096 point table can achieve ´70dB maximum spur

energy

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

27 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit
2. Table lookup
3. CORDIC

˝ Very well known approach
˝ Doesn’t use any multiplies
˝ Can be made arbitrarily good
˝ Logic usage becomes very expensive

– For high precision
– Especially when pipelined

Sequential implementations can be much lighter

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

28 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit
2. Table lookup
3. CORDIC

˝ Produces both sine and cosine outputs
˝ Adjustable amplitude output

– Result multiplies incoming value by sine/cosine
– Algorithm introduces an additional scale
– The internal scale factor may need compensation

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

29 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit
2. Table lookup
3. CORDIC
4. Table + linear interpolation

˝ Requires a multiply
˝ Can greatly improve upon raw table lookups
˝ Table can be built to . . .

– Acheive lowest sidelobe performance, or
– Achieve minimum maximum error in time

˝ A 64 point table can achieve ´70dB maximum spur
energy

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

30 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit
2. Table lookup
3. CORDIC
4. Table + linear interpolation
5. Table + quadratic interpolation

˝ Requires a two multiplies and several steps
˝ 16 point table ñ ´70dB maximum spur energy
˝ 64 point table ñ ´180dB maximum spur energy

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html
https://github.com/ZipCPU/cordic/blob/master/rtl/quadtbl.v

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

31 / 81

Several techniques for generating sine waves in hardware

1. Just use the most significant phase bit
2. Table lookup
3. CORDIC
4. Table + linear interpolation
5. Table + quadratic interpolation
6. Higher order approximations are possible

˝ But are they really necessary?

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/dsp/2017/08/30/cordic.html
https://github.com/ZipCPU/cordic/blob/master/rtl/quadtbl.v

Sinewave Generation

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Ź
Sinewave
Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

32 / 81

We’ll use the basic table lookup method

˝ Building a lookup table is covered in the beginner’s tutorial

– You are welcome to build your own
– My own example of sintable.v is also available

This coregen can make designs for arbitrary bit-widths

always @ (posedge i_clk)
i f (audio_ce)

sin <= sin_table [phase [3 1 : 2 0]] ;

Link: More advanced sinewave generators

https://zipcpu.com/dsp/2017/07/11/simplest-sinewave-generator.html
https://zipcpu.com/tutorial
https://github.com/ZipCPU/cordic/blob/master/rtl/sintable.v
https://github.com/ZipCPU/cordic
https://github.com/ZipCPU/cordic

Magnitude Adjustment

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Ź Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

33 / 81

We’d like to be able to control how loud our tone is

˝ Multiply the table output by a scale factor

reg signed [1 5 : 0] sin , sample ;
reg signed [1 6 : 0] r_scale ;
reg signed [3 2 : 0] scaled ;

always @ (posedge i_clk)
i f (audio_ce)

sin <= sintable [phase [3 1 : 2 0]] ;

always @ (posedge i_clk)
i f (audio_ce)
begin

scaled <= sin ∗ r_scale ;
sample <= scaled [3 2 : 1 6] ;

end

Bitwidth

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Ź Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

34 / 81

Bit widths must be carefully tracked in fixed bit math

˝ Adding two numbers increases the bit width by one over the
largest incoming bit width

˝ Multiplying two numbers creates a result having the width of
the sum of the two numbers

– Beware of multiplying signed with unsigned numbers
– To make r_scale signed, we’ll need to keep the MSB clear

In our case

˝ We’ll let our table have 16-bits, r_scale with 17-bits
˝ scaled will then have 33-bits
˝ The sample result will then have 16-bits again
˝ r_scale will scale the result from full scale to zero

DSP Rules

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

Ź DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

35 / 81

Many FPGAs have hard multiply accelerators

˝ These are often called DSPs
˝ Without hard DSP blocks

– The synthesizer will try to pack all the multiplication logic
in one clock cycle

– This will consume a lot of logic
– This may likely keep you from meeting timing as well

˝ If your FPGA doesn’t have any DSPs, you may need to build
an alternative

– See here for a low-logic example

˝ As an engineer, you will need to manage DSP usage

Let’s look at some rules to guarantee DSP allocation

https://github.com/ZipCPU/zipcpu/blob/master/rtl/core/slowmpy.v

DSP Rules

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

Ź DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

36 / 81

Rules for DSP usage

1. Always mark both operands as either signed or unsigned

reg signed [1 5 : 0] sin ;
reg signed [1 6 : 0] r_scale ;

˝ Most math operations produce the same result
independent of any operand sign: add, subtract, and, or,
xor, etc

˝ Multiplication is a key exception to this rule
˝ Bit concatenations create unsigned values

DSP Rules

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

Ź DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

37 / 81

Rules for DSP usage

1. Always mark both operands as either signed or unsigned
2. Like memories, keep the logic blocks sparse

˝ Follow this form

always @ (posedge i_clk)
i f (CE) // Put no th i ng e l s e i n t h i s

A <= X ∗ Y ; // l o g i c b l o ck

˝ Some hardware architectures allow an accumulate as well

always @ (posedge i_clk)
i f (CE)

A <= X ∗ Y + C ;

˝ Know what your hardware supports

DSP Rules

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

Ź DSP Rules

Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

38 / 81

Rules for DSP usage

1. Always mark both operands as either signed or unsigned
2. Like memories, keep the logic blocks sparse
3. Resets should be kept external to the multiply

˝ If you need a reset, reset the result on the next clock

i n i t i a l { result , r_clear } = 1 ;
always @ (posedge i_clk)
i f (i_reset)

{ result , r_clear } = 1 ;
e l s e i f (r_clear)

{ result , r_clear } = 0 ;
e l s e

result <= multiply_output ;

Lag

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Ź Lag

Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

39 / 81

In many DSP applications, lag must only be bounded

˝ µs processing delays are irrelevant
˝ At 20 ms, delays start to become relevant

My point:

Taking a couple of clocks to clear the pipeline won’t hurt

Output

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Ź Output

1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

40 / 81

Our chosen hardware requires a one-bit audio output

˝ We need to drive this bit fom our hardware
˝ You may wish to use some of your registers to control power

and amplifiers

Ex. The Pmod AMP2 has two amplifier controls to adjust:
o_shutdown_n and o_gain

Four possibilities we’ll consider to drive one audio bit

˝ 1’bit, using the MSB of our sample
˝ Pulse width modulation (PWM)
˝ Pulse density modulation (PDM)
˝ Delta Sigma modulation

https://store.digilentinc.com/pmod-amp2-audio-amplifier/
https://store.digilentinc.com/pmod-amp2-audio-amplifier/

1’bit

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

Ź 1’bit

PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

41 / 81

Easiest output solution: just produce top bit of every sample

always @ (∗)
o_audio = o_sample [1 5] ;

It works, but . . .

˝ No way to adjust volume
˝ Not a pleasant sound

– Equivalent to using a 1-bit sign table

We can do a lot better

PWM

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

Ź PWM

PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

42 / 81

Pulse Width Modulation (PWM)

˝ We could set o_audio on the first
`

o_sample ` 1

2

˘

M of every
M clock periods

˝ Need to adjust the range of o_sample

– Needs to be unsigned
– Instead of a range from ´32, 768, . . . , 32, 767

– Flip the MSB, to get a range from 0, . . . , 65, 535

always @ (posedge i_clk)
pwm_counter <= pwm_counter + 1 ;

always @ (posedge i_clk)
o_audio <= (pwm_counter >=

{ ! o_sample [1 5] , o_sample [1 4 : 0] }) ;

PDM

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

Ź PDM

Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

43 / 81

Pulse Density Modulation (PDM)

˝ We could scramble which bits are set
˝ Reverse the order of bits in the pwm_counter

˝ Pushes the distortion to higher frequencies

genvar k ;
generate fo r (k=0; k<PWM_BITS ; k=k+1)
begin

brev_counter [k] = pwm_counter [PWM_BITS´1́ k] ;
end endgenerate

always @ (posedge i_clk)
o_audio <= (brev_counter >=

({ ! o_sample [1 5] , o_sample [1 4 : 0] }) ;

Delta-Sigma

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Ź Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

44 / 81

Delta Sigma modulation

˝ A formalized approach to PDM
˝ Can get a lot more complicated
˝ There’s a lot of math behind this

– Delta-Sigmal modulator is a control loop w/ feedback
– First, second, and third order loops are possible

Delta-Sigma

Lesson Overview

Tone Generator

Audio Pipeline

Clock Enables

Enable Generation

Frequency Step

Table Size

Sinewave Generation

Magnitude

Bitwidth

DSP Rules

Lag

Output

1’bit

PWM

PDM

Ź Delta-Sigma

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

45 / 81

Delta Sigma modulation

˝ A simple, first-order, delta-sigma modulator

reg [1 5 : 0] ds_counter ;

always @ (posedge i_clk)
{ o_audio , ds_counter }

<= ({ ! o_sample [1 5] , o_sample [1 4 : 0] }
+ ds_counter ;

˝ We want high frequency, so we dropped the clock enable
˝ The carry from the addition is our output
˝ It’s also naturally removed from the sum

– This is the delta in delta-sigma modulation
– The sum forms the sigma

Debugging

Lesson Overview

Tone Generator

Ź Debugging

Debug visually

Octave script

Debug clock gating

AutoFPGA

Formal Verification

Simulation

Hardware

46 / 81

Debug visually

Lesson Overview

Tone Generator

Debugging

Ź Debug visually

Octave script

Debug clock gating

AutoFPGA

Formal Verification

Simulation

Hardware

47 / 81

DSP is most easily debugged with pictures and graphs

˝ Step one: write the data to an external file

FILE * fp = fopen("dumpfile .16t", "w");

// ...

wh i l e (/* ... */) {

// ...

t i c k ();
i f (m core -> o aud io ce) {

f w r i t e (&m core ->o sample ,
s i z e o f (sho r t), 1, fp);

// May need to fflush this if fp ...

// might be unexpectedly closed

f f l u s h (fp); // ... your call

}

} // ...

f c l o s e (fp);

Octave script

Lesson Overview

Tone Generator

Debugging

Debug visually

Ź Octave script

Debug clock gating

AutoFPGA

Formal Verification

Simulation

Hardware

48 / 81

DSP is most easily debugged with pictures and graphs

˝ Matlab or Octave can really help here

You can then create an m-file script

f i d = fopen (’ dump f i l e . 16 t ’ , ’ r ’) ;
data= f r e a d (f i d , i n f , ’ i n t 16 t ’) ;
f c l o s e (f i d) ;

p l o t (data) ;

https://www.gnu.org/software/octave

Debug clock gating

Lesson Overview

Tone Generator

Debugging

Debug visually

Octave script

Ź
Debug clock
gating

AutoFPGA

Formal Verification

Simulation

Hardware

49 / 81

To gate on the clock enables or not?

i f (m core -> o aud io ce) // <-- gate here?

f w r i t e (&m core ->o sample ,
s i z e o f (sho r t), 1, fp);

˝ Pro: Minimizes the data that needs to be examined

– Useful if signals violate the clock enable rule(s)
– Also if the clock enables aren’t consistent

˝ Con: Might hide important events w/in your design
˝ Con: Relating multiple signals can be a challenge

– Challenging example: resamplers

Whether or not you gate your output on audio_ce is a design
decision

AutoFPGA

Lesson Overview

Tone Generator

Debugging

Ź AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

50 / 81

Bus connection

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Ź Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

51 / 81

Let’s connect this design to our bus

˝ We’ll give it four registers

1. Frequency step
2. Scale factor
3. (Reserved for your curiosity)
4. (Reserved)

DOUBLE slave

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

Ź DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

52 / 81

We’ll use the AutoFPGA SLAVE.TYPE=DOUBLE

˝ Like SINGLE, DOUBLE uses a simplified bus interface
˝ DOUBLE slaves can have multiple registers
˝ Not allowed to stall the bus

always @ (∗)
o_wb_stall = 1 ’b0 ;

˝ Require a single clock to generate any responses

i n i t i a l o_wb_ack = 1 ’b0 ;
always @ (posedge i_clk)

o_wb_ack <= ! i_reset && i_wb_stb ;

Bus writes

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Ź Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

53 / 81

The rest of the bus logic is straight forward

˝ We’ll need to set our control registers

always @ (posedge i_clk)
i f (i_wb_stb && i_wb_we)
case (i_wb_addr)
2 ’ b00 : r_frequency_step <= i_wb_data ;
2 ’ b01 : r_scale <= { 1 ’b0 , i_wb_data [1 5 : 0] } ;
2 ’ b10 : begin end // Your op t i on
2 ’ b11 : begin end // Your op t i on
endcase

We can ignore the i_wb_sel lines

˝ Writing bytes or halfwords will produce undefined behavior
˝ This is not uncommon in digital design

Bus reads

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Ź Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

54 / 81

The rest of the bus logic is straight forward

˝ Also want to be able to read our control registers

always @ (posedge i_clk)
case (i_wb_addr)
2 ’ b00 : o_wb_data <= r_frequency_step ;
2 ’ b01 : o_wb_data <= { 16 ’h0 , r_scale } ;
2 ’ b10 : o_wb_data <= 0 ; // Your op t i on
2 ’ b11 : o_wb_data <= 0 ; // Your op t i on
endcase

AutoFPGA config

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

Ź
AutoFPGA
config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

55 / 81

We’ll also need an AutoFPGA configuration file
@PREFIX=tonegen

@NADDR=4 Number of slave addresses
@SLAVE.BUS=wb Connect to bus named wb
@SLAVE.TYPE=DOUBLE

@MAIN.PORTLIST= Define a design port

o_audio_ce , o_sample , o_audio

@MAIN.IODECL= Declare our outputs

output wire o_audio_ce ;
output wire [1 5 : 0] o_sample ;
output wire o_audio ;

AutoFPGA Config

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

Ź
AutoFPGA
config

Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

56 / 81

Our main level logic is inserted using the @MAIN.INSERT tag
@MAIN.INSERT= Will be copied into main.v

@$ (PREFIX)
@$ (PREFIX)i (i_clk , i_reset ,

// Connect to the bus
@$ (SLAVE . PORTLIST) ,
// Connect our ou tgo ing s i g n a l s
o_audio_ce , o_sample , o_audio) ;

Register Definitions

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Ź Register defn

Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

57 / 81

We’ll also tell our debug port about our registers
@REGS.N=2 Define two registers
@REGS.0=0 R FREQUENCY FREQUENCY Reg #1
@REGS.1=1 R AMPLITUDE AMPLITUDE Reg #2

The format of the @REGS tag:

˝ First field, the word offset of the register
˝ Then a C++ name for the register
˝ Finally, a user name (wbregs) for the register
˝ Additional names, if present, are additional usernames

(aliases) for the same register

You can add more definitions if you choose to define more
registers

Makefile

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Ź Makefile

Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

58 / 81

If your flow uses a Makefile when processing rtl/

˝ You can add tonegen.v to the list of dependencies used by
this core

@RTL.MAKE.FILES=tonegen.v sintable.v RTL files used

Simulation tick

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Ź Simulation tick

Top level I/Os

Formal Verification

Simulation

Hardware

59 / 81

We’ll want to add our debugging logic

˝ This will be called on every tick of the clock clk

@SIM.CLOCK=clk
@SIM.TICK=

i f (m core -> o aud io ce) {

f w r i t e (&m core ->o sample ,
s i z e o f (sho r t), 1, fp);

f f l u s h (fp); // ... your call

}

Top level I/Os

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Ź Top level I/Os

Formal Verification

Simulation

Hardware

60 / 81

What about the top level I/O’s?

˝ o_audio_ce is really an internal signal
˝ As is o_sample
˝ Without telling AutoFPGA otherwise

– @MAIN.PORTLIST is used at the toplevel
– As is @MAIN.IODECL
– These will not just be outputs of our verilator simulation
– But also our top level hardware build

˝ Solution: Define separate top level ports

AutoFPGA Config

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Ź Top level I/Os

Formal Verification

Simulation

Hardware

61 / 81

What about the top level I/O’s?

˝ Solution: Define separate top level ports

@TOP.PORTLIST= List toplevel ports

o_audio

@TOP.IODECL= Declare our toplevel ports

output wire o_audio ;

@TOP.DEFNS= Define toplevel wires

wire w_audio_ce ;
wire [1 5 : 0] w_sample ;

@TOP.MAIN= Connect these toplevel signals to main

w_audio_ce , w_sample , o_audio

AutoFPGA Makefile

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Ź Top level I/Os

Formal Verification

Simulation

Hardware

62 / 81

Last steps:

˝ Put your config, tonegen.txt, in the autodata directory
˝ Include tonegen.txt in the autodata/Makefile
˝ Place your logic, tonegen.v and sintable.v, into the rtl

directory
˝ Re-run AutoFPGA, make autodata

˝ Rebuild the rest of the project

Build problems?

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Bus connection

DOUBLE slave

Bus writes

Bus reads

AutoFPGA config

Register defn

Makefile

Simulation tick

Ź Top level I/Os

Formal Verification

Simulation

Hardware

63 / 81

If you struggle at all to get AutoFPGA to do what you want

˝ There’s a -d option you can enable
˝ This will produce an autofpga.dbg file
˝ Shows you how the data is transformed throughout

Formal Verification

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Ź
Formal
Verification

Bus Slaves

Property Files

Instantiation

Induction

SymbiYosys script

Simulation

Hardware

64 / 81

Bus Slaves

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Ź Bus Slaves

Property Files

Instantiation

Induction

SymbiYosys script

Simulation

Hardware

65 / 81

˝ Formally verifying signal processing blocks can be a challenge

– We’ll debug those via simulation

˝ Formally verifying bus slaves is easy

– A bus slave failure will hang your entire design
– Complicates debugging
– Could leave you in FPGA Hell

Always formally verify any and all bus components

˝ The time to get into the habit starts now

https://zipcpu.com/blog/2017/05/19/fpga-hell.html

Property Files

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

Ź Property Files

Instantiation

Induction

SymbiYosys script

Simulation

Hardware

66 / 81

The first thing you will need is a bus property file

˝ Here’s a Wishbone slave property file
˝ Any core that passes this property check will not hang the bus
˝ That’s not the same as proving that it will work

– It just won’t hang the bus

https://github.com/ZipCPU/wb2axip/blob/master/bench/formal/fwb_slave.v

Instantiation

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

Property Files

Ź Instantiation

Induction

SymbiYosys script

Simulation

Hardware

67 / 81

Instantiate this core in a formal property section of tonegen.v

˝ You’ll need to set some parameters
˝ AW=2, since we have 2 “ log2 4 registers
˝ F MAX STALL“ 1, otherwise maximum stalls won’t be checked
˝ F MAX ACK DELAY“ 2, since we return all results in one cycle
˝ F LGDEPTH“ 2, specifies that two-bit counters can be used to

keep track of the number of outstanding bursts

Instantiation

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

Property Files

Ź Instantiation

Induction

SymbiYosys script

Simulation

Hardware

68 / 81

You’ll also need to capture three results from the property file

˝ The number of total requests that have been made,
fwb_nreqs

˝ The number of total acknowledgments received, fwb_nacks
˝ The total number of outstanding requests, fwb_outstanding

localparam F_LGDEPTH=2;

wire [F_LGDEPTH ´1:0] fwb_nreqs , fwb_nacks ,
fwb_outstanding ;

Instantiation

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

Property Files

Ź Instantiation

Induction

SymbiYosys script

Simulation

Hardware

69 / 81

Your code should look something like . . .

localparam F_LGDEPTH=2;

fwb_slave #(.AW (2) , . F_LGDEPTH (F_LGDEPTH) ,
. F_MAX_STALL (1) ,
. F_MAX_ACK_DELAY (2))

fwb (i_clk , i_reset ,
i_wb_cyc , i_wb_stb , i_wb_we , i_wb_addr ,

i_wb_data , i_wb_sel ,
o_wb_ack , o_wb_stall , o_wb_data , 1 ’b0) ;

Induction

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

Property Files

Instantiation

Ź Induction

SymbiYosys script

Simulation

Hardware

70 / 81

To pass induction, you’ll need just one more property

always @ (∗)
i f (i_wb_cyc)

as se r t (fwb_outstanding == (o_wb_ack ? 1 : 0)) ;

Beware of the definition of fwb_outstanding

ass ign f_outstanding = (i_wb_cyc)
? (f_nreqs ´ f_nacks) : 0 ;

˝ It will always be zero if !i_wb_cyc, regardless of o_wb_ack
˝ Hence the if (i_wb_cyc) above

SymbiYosys script

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Bus Slaves

Property Files

Instantiation

Induction

Ź
SymbiYosys
script

Simulation

Hardware

71 / 81

[opt ions] # Place i n bench/ fo rma l s u b d i r
mode prove # Unbounded (i . e . i n d u c t i o n) p r oo f
depth 3

[engines]
smtbmc # The d e f a u l t eng i n e

[s c r i p t] # Yosys s c r i p t
read ´formal fwb_slave . v
read ´formal sintable . v
read ´formal tonegen . v
prep ´top tonegen

[f i l e s] # Read f i l e s
fwb_slave . v
. . / . . / rtl/sintable . v
. . / . . / rtl/tonegen . v

Simulation

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Ź Simulation

VCD File

VCD File

Data dump

Your turn!

Hardware

72 / 81

Simulation?

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Data dump

Your turn!

Hardware

73 / 81

How will you know if it works

˝ Before you place it on hardware?
˝ . . . where you can no longer tell why it isn’t working?

Simulation!

Sim Script

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Data dump

Your turn!

Hardware

74 / 81

As with your last design

˝ Build and run sim/main tb.cpp

main_tb -d

˝ While running, run

wbregs frequency 0x0258bf25

wbregs amplitude 0x0300

˝ This should create a 440Hz tone

– 440Hz is an “A” above middle C
– Used extensively for tuning instruments

Let it run for several seconds, and then kill main tb with Ctrl-C

˝ Open and examine the waveform

VCD File

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Ź VCD File

VCD File

Data dump

Your turn!

Hardware

75 / 81

Using GTKWave, I produced this image

See if you can do it too

VCD File

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

Ź VCD File

Data dump

Your turn!

Hardware

76 / 81

Using GTKWave, I produced this image

Notice the poor quality o_audio

˝ This was produced by using only the top bit of o_sample

Data dump

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Ź Data dump

Your turn!

Hardware

77 / 81

You should also have a dumpfile.16t

˝ Open it with Octave (or Matlab)
˝ How do the samples look?
˝

https://www.gnu.org/software/octave

Data dump

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Ź Data dump

Your turn!

Hardware

77 / 81

You should also have a dumpfile.16t

˝ Open it with Octave (or Matlab)
˝ How do the samples look?
˝ Try using the included simscript.m to display them

https://www.gnu.org/software/octave

Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Data dump

Ź Your turn!

Hardware

78 / 81

Now modify your simulation to . . .

˝ Bring the o_audio output pin into Octave
˝ You’ll need to filter it to get something recognizable

pin = % You ’ ll need to set this

% Filter the incoming samples

fltrd = conv (ones (500 , 1) , pin) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
plot (fltrd) ;

˝ How does the result look?
˝ It should look like o_sample

–

https://www.gnu.org/software/octave

Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Data dump

Ź Your turn!

Hardware

78 / 81

Now modify your simulation to . . .

˝ Bring the o_audio output pin into Octave
˝ You’ll need to filter it to get something recognizable

pin = % You ’ ll need to set this

% Filter the incoming samples

fltrd = conv (ones (500 , 1) , pin) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
plot (fltrd) ;

˝ How does the result look?
˝ It should look like o_sample

– Does it?

https://www.gnu.org/software/octave

Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Data dump

Ź Your turn!

Hardware

78 / 81

Now modify your simulation to . . .

˝ Bring the o_audio output pin into Octave
˝ You’ll need to filter it to get something recognizable

pin = % You ’ ll need to set this

% Filter the incoming samples

fltrd = conv (ones (500 , 1) , pin) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
fltrd = conv (ones (500 , 1) , fltrd) ;
plot (fltrd) ;

˝ How does the result look?
˝ It should look like o_sample

– Does it? Can you plot the two together?

https://www.gnu.org/software/octave

Your turn!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

VCD File

VCD File

Data dump

Ź Your turn!

Hardware

79 / 81

Modify your design again so you can choose:

˝ Either the 1’bit audio output, or
˝ The PWM, PDM, or the Delta-Sigma output

Which is better?

˝ You may wish to look at the FFT of your tone

f r e q = (1 : l e n g t h (f l t r d)) . / l e n g t h (f l t r d) ;
f r e q = (f r e q ´ 1/2) ∗ s amp l e r a t e ;
p l o t (f r eq , f f t s h i f t (abs (f f t (f l t r d)))) ;
x l a b e l (’ Frequency (Hz) ’) ;
y l a b e l (’ Magnitude ’) ;

˝ Or compare the FFT’s of each approach against the others
˝ Perhaps you want to adjust your design to create all four

outputs at once

Hardware

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Ź Hardware

Build it!

80 / 81

Build it!

Lesson Overview

Tone Generator

Debugging

AutoFPGA

Formal Verification

Simulation

Hardware

Ź Build it!

81 / 81

This is the moment you’ve been waiting for!

˝ It’s now time to build your design for your board
˝ Connect the amplifier
˝ Is the sound at all what you expect?
˝ Which approach ”sounds” the best?
˝ Can you create a script to play Yankee Doodle?

https://store.digilentinc.com/pmod-amp2-audio-amplifier/

	
	Lesson Overview
	Tone Generator
	Audio Pipeline
	Clock Enables
	Enable Generation
	Frequency Step
	Table Size
	Sinewave Generation
	Magnitude Adjustment
	Bitwidth
	DSP Rules
	Lag
	Output
	1'bit
	PWM
	PDM
	Delta-Sigma

	Debugging
	Debug visually
	Octave script
	Debug clock gating

	AutoFPGA
	Bus connection
	DOUBLE slave
	Bus writes
	Bus reads
	AutoFPGA config
	Register Definitions
	Makefile
	Simulation tick
	Top level I/Os

	Formal Verification
	Bus Slaves
	Property Files
	Instantiation
	Induction
	SymbiYosys script

	Simulation
	VCD File
	VCD File
	Data dump
	Your turn!

	Hardware
	Build it!

