
Gisselquist
Technology, LLC

1. Blinky

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Host Software

2 / 72

Objective: To learn and become familiar with using a bus

˝ We’ll use Wishbone in this lesson

– Look for an AXI-lite example in the next lesson, and any
accompanying appendices

˝ Build a basic general purpose output controller
˝ Extend it to handle inputs

https://zipcpu/2017/11/07/wb-formal.html

Work in Progress

Ź Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Host Software

3 / 72

This lesson is currently a work in progress.

It will remain so until . . .

˝ I have a verified the instructions and
˝ Used them to generate a working example on my own
˝ I have some AXI-lite examples in an appendix

AutoFPGA Tools

Lesson Overview

Ź

AutoFPGA
Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

4 / 72

Example AutoFPGA

Lesson Overview

AutoFPGA Tools

Ź

Example
AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

5 / 72

Let’s learn our way around an AutoFPGA design

1. Clone and build AutoFPGA

% git clone \

https :// github.com/ZipCPU/autofpga

% cd autofpga

% make

% export PATH=$PATH:<path_to_autofpga >/sw

2. Clone and build AutoFPGA’s demo

% git clone --recurse -submodules \

https :// github.com/ZipCPU/autofpga -demo

% cd autofpga -demo

% make

Let’s take a look around the AutoFPGA-demo

https://github.com/ZipCPU/autofpga
https://github.com/ZipCPU/autofpga-demo

Running the Demo

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Ź

Running the
Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

6 / 72

Running the demo requires a couple of steps

1. Open a terminal, and start the Verilator simulation

% cd <path_to_autofpga_demo >/sim

% ./ main_tb

Listening on port 9467

2. You can kill this simulation with Ctrl-C when you are done
3. In a second terminal, let’s read a register from the sim

% cd <path_to_autofpga_demo >/sw

% ./ wbregs PWRCOUNT

00080008 (PWRCOUNT) : [..o8] 001 c6f38

% ./ wbregs PWRCOUNT

00080008 (PWRCOUNT) : [.$..] 0024 efa5

% ./ wbregs PWRCOUNT

00080008 (PWRCOUNT) : [.*.*] 002 ad32a

PWRCOUNT

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

Ź PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

7 / 72

The PWRCOUNT register simply counts the number of clock
cycles since startup

i n i t i a l r_pwrcount_data = 32 ’h0 ;
always @ (posedge i_clk)
i f (r_pwrcount_data [3 1])

r_pwrcount_data [3 0 : 0]
<= r_pwrcount_data [3 0 : 0] + 1 ’b1 ;

e l s e

r_pwrcount_data [3 1 : 0]
<= r_pwrcount_data [3 1 : 0] + 1 ’b1 ;

˝ The top bit saturates, and then stays high
˝ This logic should look familiar from the last tutorial

We just read this register from within the design

RAWREG

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

Ź RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

8 / 72

The design also contains a basic register, RAWREG, that can be
read or set

% ./ wbregs rawreg

0008000c (RAWREG) : [....] 00000000

% ./ wbregs rawreg 0x23458765

0008000c (RAWREG)-> 23458765

% ./ wbregs rawreg

0008000c (RAWREG) : [.E.e] 23458765

% ./ wbregs rawreg 0xdeadbeef

0008000c (RAWREG)-> deadbeef

% ./ wbregs rawreg

0008000c (RAWREG) : [....] deadbeef

We just read our register, set it to 32’h23458765, read it again,
set it to 32’hdeadbeef and then read it one last time.

RAWREG

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

Ź RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

9 / 72

The design also contains a basic register, RAWREG, that can be
read or set

i n i t i a l r_rawreg_data = 32 ’h0 ;
always @ (posedge i_clk)
i f (wb_rawreg_stb && wb_rawreg_we)

r_rawreg_data <= wb_rawreg_data ;

We just read this register from within the design

˝ We’ll discuss how to build this in more detail in the next
section

In Hardware

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

Ź In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

10 / 72

To build this design for hardware . . .

˝ Create a constraint file defining the serial port wires

– Once done, adjust auto-data/global.txt
– On a Xilinx Vivado design, you’ll want to adjust the

@XDC.FILE= line needs to point to your XDC file
– On an iCE40 design, you’ll want to change that to be a

@PCF.FILE= line pointing to your PCF file
– On an ECP5, change it to @LPF.FILE=

– On a Spartan 6, change it to @UCF.FILE=

– In all cases, the file name should follow the = sign

In Hardware

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

Ź In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

11 / 72

To build this design for hardware . . .

˝ Create a constraint file defining the serial port wires
˝ Set your incoming clock rate

– Edit auto-data/clock.txt
– Adjust the @$CLKFREQHZ= line to match the clock rate of

your design

In Hardware

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

Ź In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

12 / 72

To build this design for hardware . . .

˝ Create a constraint file defining the serial port wires
˝ Set your incoming clock rate
˝ Remove the switch and button configuration

– These probably won’t match your hardware
– Edit auto-data/Makefile
– Remove the spio.txt configuration file from the line

beginning with DATA :=

– Rebuild the design from the base project directory

% make

– Add the files in the rtl/ directory to your synthesis flow
– Build and load the design onto your hardware

In Hardware

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

Ź In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

13 / 72

To build this design for hardware . . .

˝ Create a constraint file defining the serial port wires
˝ Set your incoming clock rate
˝ Remove the switch and button configuration
˝ Open a terminal, and connect netuart to your design

% cd <path_to_autofpga_demo >/sw

% netuart /dev/ttyUSBx

– If all works well, you should see a periodic Z printed to the
netuart terminal

– This will confirm that you have the right port, and the
right serial port settings

https://zipcpu.com/blog/2017/06/20/dbg-put-together.html

In Hardware

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

Ź In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

14 / 72

To build this design for hardware . . .

˝ Create a constraint file defining the serial port wires
˝ Set your incoming clock rate
˝ Remove the switch and button configuration
˝ Open a terminal, and connect netuart to your design

% cd <path_to_autofpga_demo >/sw

% netuart /dev/ttyUSBx

– Not all O/S’s will support the default 1MBaud data rate
– If you need to adjust it, change the @$BAUDRATE= line in

auto-data/hexbus.txt to something your O/S will
support

– Then rebuild the project and your hardware design

In Hardware

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

Ź In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

15 / 72

To build this design for hardware . . .

˝ Create a constraint file defining the serial port wires
˝ Set your incoming clock rate
˝ Remove the switch and button configuration
˝ Open a terminal, and connect netuart to your design
˝ Open a second terminal, and run the PWRCOUNT and

RAWREG tests as before

What just happened?

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware

Ź

What just
happened?

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

16 / 72

What did we just do?

˝ make first builds in the auto-data/ directory

– This generates a series of design files, including main.v

and toplevel.v, and other files

˝ The master Makefile then checks if these files have changed
˝ Changed files are copied from the auto-generated/ directory

into your design
˝ make then built in the rtl/ directory

– This called Verilator to convert your Verilog to C++
– Then built a library from this C++

˝ make then built in the sim/ directory

– This built our simulation
– We could include calls to emulation software here

What just happened?

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

Ź

What just
happened?

The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

17 / 72

What did we just do?

˝ make first builds in the auto-data/ directory

– Changed autogenerated files are copied into their
respective design locations

˝ make then built in the rtl/ directory
˝ make then built in the sim/ directory
˝ make then built in the sw/ directory

– This built wbregs and netuart

– These depend upon constants and addresses of
components (and the baud rate) defined within the design

The Baud Rate

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

Ź The Baud Rate

The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

18 / 72

How did the baudrate change?

˝ Changing a baud rate requires changes throughout the design

– rtl/main.v: The RTL design needs to change based
upon the design clock frequency

– sim/main tb.cpp: The simulator needs to know how
many clocks per baud at the new rate

– sw/netuart.cpp: The host terminal software needs to
know to set to the new baud rate

Ź sw/regdefs.h contains the new BAUDRATE constant

˝ All this is done by AutoFPGA propagating design constants
throughout a series of generated files

The Buttons

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

Ź The Buttons

Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

19 / 72

What about removing the buttons and switches?

˝ The original design referenced 8 LEDs, 5 buttons (with
special names), and 8 switches

˝ By removing one file from the AutoFPGA command line,
AutoFPGA . . .

– Removed the processing logic from rtl/main.v

– Removed the rtl/main.v ports for these signals
– Removed the bus ports from the crossbar in rtl/main.v

– Removed the rtl/toplevel.v ports for these I/Os
– Removed the associated host software definitions from

sw/regdefs.h

AutoFPGA could have also . . .

˝ Removed emulation software from our simulation file
˝ Left the pin constraints for these ports commented

Reconfiguration

Lesson Overview

AutoFPGA Tools

Example AutoFPGA

Running the Demo

PWRCOUNT

RAWREG

In Hardware
What just
happened?

What just
happened?

The Baud Rate

The Buttons

Ź Reconfiguration

GPIO

AutoFPGA

Hardware Emulation

Host Software

20 / 72

AutoFPGA exists for this kind of design automation

˝ One configuration script per design component
˝ Removing the configuration script, removes all of the design

pieces depending upon that component
˝ Adding the configuration script puts it back in
˝ It’s more than just adjusting a couple of HDL files

– C++ sources, headers, and Makefiles are adjusted as well
– The constraint file can also be automatically adjusted as

I/Os are added or removed

This is why I like AutoFPGA

GPIO

Lesson Overview

AutoFPGA Tools

Ź GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

21 / 72

GPIO Purpose

Lesson Overview

AutoFPGA Tools

GPIO

Ź GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

22 / 72

Let’s now build a GPIO component. Our goals:

˝ Read external inputs via a bus interface
˝ Adjust external ouputs, such as LEDs, from the bus

Let’s back up a bit first, and discuss how bus reads and writes
work

Bus Intro

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Ź Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

23 / 72

How should software check the value of an input pin?

˝ Let’s check a button, and set an LED if the button is pressed

exte rn i n t input , l e d ;

i n t main(argc , argv) {

const i n t ON=1, OFF = 0, BUTTON = 1;

wh i l e (1) {

i f (i n pu t & BUTTON)

l e d = ON;

e l s e

l e d = OFF;

}

}

˝ Our goal is to create hardware to implement input and led.

Bus Intro

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Ź Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

24 / 72

The host software is similar, but basically the same

˝ Let’s check a button, and set an LED if the button is pressed

FPGA *m fpga;

i n t main(argc , argv) {

FPGAOPEN(m fpga);

const i n t ON=1, OFF = 0, BUTTON = 1;

wh i l e (1) {

i f (m fpga -> r ead i o (R INPUT) & BUTTON)

m fpga ->wr i t e i o (R LED, ON);

e l s e

m fpga ->wr i t e i o (R LED, OFF);

}

}

Bus Intro

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Ź Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

25 / 72

If we can interact with our design from an external host . . .

˝ Testing gets easier
˝ Commands can be sent to the FPGA
˝ Data can be read from or written to the FPGA

– This includes test data
Getting test data in and out of an FPGA is a common
beginner struggle. We’ll start with this capability.

Even before the entire design is in place, . . .

˝ Can test pieces of it in isolation
˝ From an external host-based program, or even a shell script

https://zipcpu.com/blog/2017/06/05/wb-bridge-overview.html

Two Operations

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Ź Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

26 / 72

A bus slave needs to support two operations

˝ Read

– Given an address
– Return the value of your (the designers) choice
– pressed = input & BUTTON;

or, from the host,
– pressed = m fpga->readio(R INPUT) & BUTTON;

˝ Write

– Given an address and a value
– Perform an operation of your choice
– led = (pressed) ? ON:OFF;

or, from the host,
– m fpga->writeio(LED, (pressed) ? ON:OFF);

We’ll start by implementing the hardware side of this

Wishbone Read

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Ź Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

27 / 72

i_clk

s_button

i_stb

i_we

i_addr input

o_ack

o_data 1

˝ STB requests a bus transaction
˝ For every STB && !STALL one transaction is requested.

– For now, we’ll hold STALL low

˝ If !WE, a read is requested
˝ For each read, ACK needs to be set high
˝ . . . with the return data in DATA.

Wishbone Read

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Ź Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

28 / 72

The logic to implement this is very straight forward

˝ The slave needs to set STALL, ACK, and DATA

ass ign o_stall = 0 ;

// A 2FF s y n c h r o n i z e r
always @ (posedge i_clk)

{ s_button , button_q }
<= { button_q , i_button } ;

// Bus s l a v e read l o g i c
ass ign o_ack = i_stb ;
ass ign o_data = { 31 ’h0 , s_button } ;

˝ That’s all the slave logic required to read from a button

Wishbone Write

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Ź Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

29 / 72

i_clk

i_stb

i_we

i_addr led

i_data ON

o_ack

o_led

˝ STB && WE requests a write transaction
˝ For every STB && !STALL one transaction is requested.
˝ If WE, a write is requested
˝ The write data is in the incoming DATA wires
˝ ACK gets set once for each request

Wishbone Write

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Ź Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

30 / 72

Let’s set our LED from a bus write

˝ Writes require setting the STALL and ACK signals

ass ign o_stall = 1 ’b0 ;

always @ (posedge i_clk)
i f (i_stb && i_we)

o_led <= i_data [0] ;

// Acknowledgment i s the same as b e f o r e
ass ign o_ack = i_stb ;

Select Lines

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Ź Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

31 / 72

Wishbone provides byte level access, even if the bus width is
wider

˝ High speed requires accessing many bytes at once

– The debug bus uses a 32-bit data bus
– i_data and o_data are both 32-bits

˝ CPU’s still want to be able to write only 1, or 2, (or more)
bytes at a time

– This is required to implement char and short data types

˝ This is accomplished via bus select lines

– Each bit of i_sel indicates which a byte to be written to
– These may also be called “write strobes” on some busses

Select Lines

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Ź Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

32 / 72

Using bus select lines to write to a memory

parameter DW = 32 ; // The bus data width
reg [DW´1:0] mem [MEMSZ ´1 : 0] ;

always @ (posedge i_clk)
i f (i_stb && i_we)
begin

i f (i_sel [3])
mem [i_addr] [3 1 : 2 4] <= i_data [3 1 : 2 4] ;

i f (i_sel [2])
mem [i_addr] [2 3 : 1 6] <= i_data [2 3 : 1 6] ;

i f (i_sel [1])
mem [i_addr] [1 5 : 8] <= i_data [1 5 : 8] ;

i f (i_sel [0])
mem [i_addr] [7 : 0] <= i_data [7 : 0] ;

end

Select Lines

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Ź Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

33 / 72

Using a for loop, we can make this logic generic across all bus
data widths, DW

i n teger k ;

// Wri te to memory upon r e q u e s t
always @ (posedge i_clk)
i f (i_stb && i_we)
begin

fo r (k=0; k<(DW /8) ; k=k+1)
i f (i_sel [k])

mem [i_addr] [8 ∗ k +: 8] <= i_data [8∗ k +: 8] ;
end

You now know how to make a basic Wishbone peripheral

Caution

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Ź Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

34 / 72

Be careful with for loops

˝ They don’t have the same meaning they do in software
˝ In HDL languages, for loops generate hardware

– They are always unrolled
– Each loop iteration generates another copy of (nearly) the

same hardware

˝ Loops depending on prior results typically don’t do what you
want

˝ This loop creates multiple copies of the same circuit

– All references within the loop are to different inputs
– All values set are different outputs

Always try to be aware of the logic you are generating

Select Lines

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Ź Caution

Memory Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

35 / 72

The debugging bus sets all of the select lines

˝ It’s important to know how these work, but . . .
˝ We won’t be using them for a while

Memory Mapping

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Ź

Memory
Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

36 / 72

Using a bus interface is very versatile

˝ It can be used for things other than memory

Example: Buttons and LEDs

˝ LED
Writes to the LED slave change LED states

˝ Buttons
Reads from a button register might read the state of the
buttons: pressed or not

This follows from our example above. Are there other useful
examples?

Memory Mapping

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Ź

Memory
Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

37 / 72

Using a bus interface is very versatile

˝ It can be used for things other than memory

Example: Serial port

˝ Transmit address
Writes to this address send characters

˝ Receive address
Reads from this address receive characters or a “no-character
is available” signal

Memory Mapping

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Ź

Memory
Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

38 / 72

Using a bus interface is very versatile

˝ It can be used for things other than memory

Example: Serial port with FIFO

˝ Transmit address
Writes to this address enqueue characters for transmission

˝ Receive address
Reads from this address dequeue characters received or a
“no-character is available” signal

˝ Control Register
Sets the baud rate, # of data bits, type/kind of parity, # of
stop bits

˝ Status Register
Returns how full the receive FIFO is
Returns how empty the transmit FIFO is

Memory Mapping

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Ź

Memory
Mapping

LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

39 / 72

Using a bus interface is very versatile

˝ It can be used for things other than memory

Example: Video

˝ Frame buffer
An area of memory that is read directly to the screen, but
can also be read or written from any other bus master–such
as an embedded CPU.

LED Controller

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

Ź LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

40 / 72

Let’s finish off our button and LED controllers

˝ By placing them into modules

module ledcontrol (i_clk , i_reset ,
i_wb_cyc , i_wb_stb , i_wb_we , // i wb addr ,
i_wb_data , i_wb_sel ,
o_wb_stall , o_wb_ack , o_wb_data ,
o_led) ;
// De c l a r a t i o n s . . .
input wire i_clk , i_reset ;
input wire i_wb_cyc , i_wb_stb , i_wb_we ;
input wire [DW´1:0] i_wb_data ;
input wire [DW/8 ´1:0] i_wb_sel ;
//
output wire o_wb_stall , o_wb_ack ;
output wire [DW´1:0] o_wb_data ;
output reg o_led ;

LED Controller

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

Ź LED Controller

Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

41 / 72

Let’s finish off our button and LED controllers

˝ By placing them into modules

module ledcontrol (// . . .

// Bus s l a v e l o g i c
ass ign o_wb_stall = 1 ’b0 ;
ass ign o_wb_ack = i_wb_stb ;
ass ign o_wb_data = { 31 ’h0 , o_led } ;

always @ (posedge i_clk)
i f (i_wb_stb && i_wb_we)

o_led <= i_wb_data [0] ;
endmodule

AutoFPGA calls a peripheral of this type a SINGLE peripheral

Button Reader

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Ź Button Reader

Connections

AutoFPGA

Hardware Emulation

Host Software

42 / 72

Let’s finish off our button and LED controllers

˝ By placing them into modules

module buttonreader (// . . .

// Bus s l a v e l o g i c
ass ign o_wb_stall = 1 ’b0 ;
ass ign o_wb_ack = i_wb_stb ;
ass ign o_wb_data = { 31 ’h0 , s_button } ;

// Don ’ t f o r g e t the 2FF s y n c h r o n i z e r
always @ (posedge i_clk)

{ s_button , q_button }
<= { q_button , i_button } ;

endmodule

AutoFPGA would also call this a SINGLE peripheral

Connections

Lesson Overview

AutoFPGA Tools

GPIO

GPIO Purpose

Bus Intro

Two Operations

Wishbone Read

Wishbone Write

Select Lines

Caution

Memory Mapping

LED Controller

Button Reader

Ź Connections

AutoFPGA

Hardware Emulation

Host Software

43 / 72

The last step will be to connect these peripherals to our design

˝ We could do this manually

– Need to pick an address for each peripheral
– Possibly adjust other peripheral addresses to make room
– Write address decoding logic
– Connect this to some form of bus interconnect
– Adjust C/C++ pointers and constants referencing these

addresses
– Connect any hardware emulators

˝ This is all a lot of busy work

– It’s easy to do, annoying to do again and again
– AutoFPGA will help us here

AutoFPGA

Lesson Overview

AutoFPGA Tools

GPIO

Ź AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

44 / 72

Config Files

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Ź Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

45 / 72

AutoFPGA composes a design from components

˝ Each component has a configuration file
˝ This file contains a series of @TAG=VALUE lines
˝ VALUE is typically just a piece of text

– It may consume less than a line
– It may take up many lines

˝ The VALUE may then be referenced later using @$(TAG)

˝ @$TAG=VALUE with a dollar sign sets a numeric value

– AutoFPGA provides some ability for expression evaluation
– But only if the tag is defined using @$

˝ The first key, @PREFIX, is required

– This gives the component its name
– All following keys now belong to this component

Config Files

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Ź Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

46 / 72

AutoFPGA composes a design from components

˝ Each component has a configuration file
˝ Key names are hierarchical
˝ For example, to define a bus we define a set of bus tags

– @BUS.NAME=wb

– @BUS.TYPE=wb

– @BUS.CLOCK=clk

˝ Two types of comment lines

– Comments either begin with ##, or
– With a # and a space.
– Anything else is aggregated into the previous value

The goal is to provide a copy/paste utility

˝ With an ability for cross file variable/value expansion

The Clock

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

Ź The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

47 / 72

The first step is to define a clock

˝ Looking back at the autofpga-demo
˝ The clock is defined in auto-data/clock.txt

@$CLKFREQHZ=100000000 An AutoFPGA global variable
@PREFIX=clk . . .

˝ Values defined before @PREFIX= have global scope

– They be referenced anywhere else in the design
– Example: @$X=@$(CLKFREQHZ)

˝ Values defined after would need to be referenced by the prefix
first

– Example: @$X=@$(clk.CLOCK.FREQUENCY)

The Clock

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

Ź The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

48 / 72

The first step is to define a clock

˝ Looking back at the autofpga-demo
˝ The clock is defined in auto-data/clock.txt

@$CLKFREQHZ=100000000

@PREFIX=clk Gives this component a name
@CLOCK.NAME=clk We’ll call this clock, clk
@CLOCK.TOP=i clk Name of the clock input wire

˝ Let’s tell AutoFPGA about a clock we’ll just call clk
˝ By defining a CLOCK.TOP tag, this value will be included in

the port list of toplevel.v
˝ This is unique to clocks

– Other ports are defined differently

The Clock

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

Ź The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

49 / 72

The first step is to define a clock

˝ Looking back at the autofpga-demo
˝ The clock is defined in auto-data/clock.txt

@$CLKFREQHZ=100000000 An AutoFPGA global variable
@PREFIX=clk Gives this component a name
@CLOCK.TOP=i clk Name of the clock input wire
@CLOCK.NAME=clk We’ll call this clk

˝ Finally, let’s tell AutoFPGA the frequency of this clock
@CLOCK.FREQUENCY=@$(CLKFREQHZ)

˝ Note how we just referenced the global value defined above

The Clock

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

Ź The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

50 / 72

Our clock needs a minimum of logic at the top level

˝ Still looking in auto-data/clock.txt

˝ The @TOP.DEFNS value gets pasted into the top of
toplevel.v

@TOP.DEFNS=

wire s clk, s reset;
˝ The @TOP.INSERT value gets pasted in further down

@TOP.INSERT=

assign s reset = 1’b0;
assign s clk = i clk;

˝ Since these are copy/paste lines, they can contain any logic
you deem fit

˝ AutoFPGA requires definitions for the two special signals,
s_clk and s_reset.

The Bus

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

Ź The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

51 / 72

The next step is to define a bus

˝ Looking back at the autofpga-demo
˝ The bus is defined in auto-data/global.txt

@BUS.NAME=wb Define a bus named wb
@BUS.TYPE=wb It’s a Wishbone bus
@BUS.WIDTH=32 With a 32-bit data width
@BUS.CLOCK=clk Using the clock named clk

Bus Master

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Ź Bus Master

LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

52 / 72

To be useful, every bus needs a bus master

˝ The debugging bus master is defined in
auto-data/hexbus.txt

This may look complex at first glance. It’s not really that
bad. Over the course of this tutorial, we’ll work through most
of what these tags mean–so you can generate and connect
your own bus masters.

˝ This particular version drives a Wishbone bus

– Another debug bus could be created to drive an AXI bus
– Alternatively, a bridge could convert from Wishbone to

AXI

You can learn more of how this particular debugging bus works
from the blog.

https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus
https://github.com/ZipCPU/dbgbus/blob/master/hexbus

LED Slave

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

Ź LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

53 / 72

We can now define our LED slave
@PREFIX=led Define a slave named led
@NADDR=1 Containing one word
@SLAVE.TYPE=SINGLE More on this later
@SLAVE.BUS=wb Connect to bus named wb
@MAIN.PORTLIST= Define a design port

o_led

@MAIN.IODECL= Declare our output

output wire o_led ;

@MAIN.INSERT= Our main logic

ledcontrol

theled (i_clk ,
@$ (SLAVE . PORTLIST) , // AutoConnect
o_led) ;

LED Slave

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

Ź LED Slave

Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

54 / 72

There’s one last step to our definition

˝ We need to define a register we can read from

@REGS.N=1 Define a single register
@REGS.0=0 R LED LED

This works for the host interface

˝ It defines a C++ constant R LED

˝ Having the value of our LED control register’s address
˝ It also defines a human readable name, “LED”
˝ We can now use this with wbregs
˝ The 0 value just specifies the offset of our register (in words)

from the LED controller’s base address

% ./ wbregs led

Makefile

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Ź Makefile

Type SINGLE

Your turn

Hardware Emulation

Host Software

55 / 72

Now that we’ve created a new component, you’ll now need to
adjust the auto-data/Makefile

˝ This is as simple as adding the name of our new config file to
the DATA := definition line

˝ Now re-run make and check out the differences

You should see differences in . . .

˝ rtl/toplevel.v

˝ rtl/main.v

˝ sw/regdefs.h, and
˝ sw/regdefs.cpp

Type SINGLE

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Ź Type SINGLE

Your turn

Hardware Emulation

Host Software

56 / 72

AutoFPGA supports four special classes of bus slaves

˝ SINGLE (this example)

– Describes a peripheral having only a single address
– The slave is not allowed to stall the bus
– Allows AutoFPGA to simplify the bus logic
– For Wishbone, AutoFPGA ignores the STALL and ACK

signals of SINGLE peripherals

Ź STALL is assumed to be zero
Ź ACK is assumed to be equal to STB

Type SINGLE

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Ź Type SINGLE

Your turn

Hardware Emulation

Host Software

57 / 72

AutoFPGA supports four special classes of bus slaves

˝ SINGLE (this example)

– Describes a peripheral having only a single address
– The slave is not allowed to stall the bus
– Allows AutoFPGA to simplify the bus logic
– For Wishbone, AutoFPGA ignores the STALL and ACK

signals of SINGLE peripherals
– For AXI or AXI-Lite, AutoFPGA sets all the xREADY lines

high, and ignores (assumes) BVALID and RVALID

Ź xREADY is assumed to be one
Ź AWVALID is guaranteed to be equal to WVALID

Ź xVALID is assumed to true one clock after AxVALID
Ź A slave driver handles the conversion to the simpler

bus standard

https://github.com/ZipCPU/wb2axip/blob/master/rtl/axilsingle.v

Type SINGLE

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Ź Type SINGLE

Your turn

Hardware Emulation

Host Software

58 / 72

AutoFPGA supports four special classes of bus slaves

˝ SINGLE (this example)
˝ DOUBLE

– Consumes one clock to generate the result
– Allows the slave to select a register from among multiple

possible return addresses

˝ MEMORY

– A generic bus slave, but one needing a linker script entry
– Bus logic in this case is identical to OTHER below

˝ OTHER

– Everything else

Later examples in this course will explore other types of bus
slaves

Your turn

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Ź Your turn

Hardware Emulation

Host Software

59 / 72

We just built ledcontrol, you finish buttonreader.v

˝ Create the Verilog file
˝ Create a (nearly identical) AutoFPGA configuration
˝ Match the portlist to what AutoFPGA gives you

Your turn

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Config Files

The Clock

The Bus

Bus Master

LED Slave

Makefile

Type SINGLE

Ź Your turn

Hardware Emulation

Host Software

60 / 72

You should now be able to test your design with wbregs

˝ wbregs led 1 # should turn your LED on
˝ wbregs led 0 # should turn your LED off
˝ wbregs input # should read your button status register

All we need now is some host software to adjust the LED
automatically

Hardware Emulation

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Ź

Hardware
Emulation

Emulator

Host Software

61 / 72

Emulator

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Emulator

Host Software

62 / 72

We wrote a button emulator in lesson 7 of the beginners tutorial

˝ We can use that same emulator again now
˝ Let’s now add a call to that emulator to buttonreader.txt

˝ We’ll first declare it

@SIM.CLOCK=clk

@SIM.INCLUDE=

#inc l ude "buttonsim.h"

Emulator

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Emulator

Host Software

63 / 72

We wrote a button emulator in lesson 7 of the beginners tutorial

˝ We can use that same emulator again now
˝ Let’s now add a call to that emulator to buttonreader.txt

˝ We’ll first declare it
˝ Then define it

@SIM.CLOCK=clk

@SIM.INCLUDE= // ...
@SIM.DEFNS=

BUTTONSIM *m button;

Emulator

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Emulator

Host Software

64 / 72

We wrote a button emulator in lesson 7 of the beginners tutorial

˝ We can use that same emulator again now
˝ Let’s now add a call to that emulator to buttonreader.txt

˝ We’ll first declare it
˝ Then define it
˝ Then initialize it

@SIM.CLOCK=clk

@SIM.INCLUDE= // ...
@SIM.DEFNS= // ...
@SIM.INIT=

m button = new BUTTONSIM();

Emulator

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Emulator

Host Software

65 / 72

We wrote a button emulator in lesson 7 of the beginners tutorial

˝ We can use that same emulator again now
˝ Let’s now add a call to that emulator to buttonreader.txt

˝ We’ll first declare it
˝ Then define it
˝ Then initialize it
˝ Then call the emulator on every clock tick

@SIM.CLOCK=clk

@SIM.INCLUDE= // ...
@SIM.DEFNS= // ...
@SIM.INIT= // ...
@SIM.TICK=

m core -> i b u t t on = (*m button)();

Emulator

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Emulator

Host Software

66 / 72

We wrote a button emulator in lesson 7 of the beginners tutorial

˝ We can use that same emulator again now
˝ Let’s now add a call to that emulator to buttonreader.txt

˝ We’ll first declare it
˝ Then define it
˝ Then initialize it
˝ Then call the emulator on every clock tick

These lines will just get copied and pasted into your
sim/main_tb.cpp file

˝ When/if you remove buttonreader.txt from your config,
˝ They’ll then be removed as well

LED Emulation

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Emulator

Host Software

67 / 72

Emulating the LED is easier

˝ You can just declare an m lastled variable
˝ Set it on every clock to m core->o led

˝ Print every time it changes
˝ This will print to the main_tb console

– Together with anything else
– The debug bus will print to the console as well

Go ahead, try it.

Host Software

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Ź Host Software

Software

Building

Embedded CPU

Your turn

68 / 72

Software

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Host Software

Ź Software

Building

Embedded CPU

Your turn

69 / 72

Let’s now build the blinking software we described earlier

#inc l ude "port.h" // Def’n FPGAOPEN

#inc l ude "regdefs.h" // Def’n registers

#inc l ude "hexbus.h" // Def’n the FPGA interface

FPGA *m fpga; // Declare an FPGA interface

i n t main(i n t argc , char ** argv) {

// Connect to our FPGA

FPGAOPEN(m fpga);

// The rest follows from before

// ...

//

Save this as blinker.cpp

Building

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Host Software

Software

Ź Building

Embedded CPU

Your turn

70 / 72

To build this, we’ll adjust the sw/Makefile

˝ Add blinker to the list of PROGRAMS
˝ Add the following lines

b l i n k e r : $(OBJDIR)/ b l i n k e r .o $(BUSOBJS)

$(CXX) $(CFLAGS) $^ $(LIBS) -o $@

Running make should now build your blinking program

Embedded CPU

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Host Software

Software

Building

Ź Embedded CPU

Your turn

71 / 72

The software for an embedded CPU would be quite similar

˝ Later on, we’ll add in the ZipCPU
˝ Until then, we’ll hold off developing embedded CPU software
˝ This will allow us to focus on building and debugging the

environment the CPU will eventually be placed within

Your turn

Lesson Overview

AutoFPGA Tools

GPIO

AutoFPGA

Hardware Emulation

Host Software

Software

Building

Embedded CPU

Ź Your turn

72 / 72

Your turn:

˝ Try out blinker
˝ Does the LED turn on when you press the button?
˝ Does the LED turn off when you release the button?

What if you modify the host program?

˝ Can you make the LED blink by running a program on your
PC?

	
	Lesson Overview
	AutoFPGA Tools
	Example AutoFPGA
	Running the Demo
	PWRCOUNT
	RAWREG
	In Hardware
	What just happened?
	What just happened?
	The Baud Rate
	The Buttons
	Reconfiguration

	GPIO
	GPIO Purpose
	Bus Intro
	Two Operations
	Wishbone Read
	Wishbone Write
	Select Lines
	Caution
	Memory Mapping
	LED Controller
	Button Reader
	Connections

	AutoFPGA
	Config Files
	The Clock
	The Bus
	Bus Master
	LED Slave
	Makefile
	Type SINGLE
	Your turn

	Hardware Emulation
	Emulator

	Host Software
	Software
	Building
	Embedded CPU
	Your turn

