
Gisselquist
Technology, LLC

9. Serial Port

Receiver

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

2 / 67

Let’s build a Serial Port Receiver

˝ Like the transmitter, it will have

– A constant baud rate,
– 8 data bits, no parity, and one stop bit

˝ Building the serial port is not tremendously more complex
than the transmitter

– Verifying the serial port will be our biggest challenge

˝ Also build a UARTSIM transmitter in C++ for Verilator

Objectives

˝ Know how to coordinate verification across files
˝ Experience the power of induction
˝ Gain more experience building Verilator Co-simulators
˝ Learn how to work with a Verilator serial port simulator

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
http://zipcpu.com/blog/2018/03/10/induction-exercise.html
https://en.wikipedia.org/wiki/Co-simulation
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Design Goal

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

3 / 67

We discussed building a serial port receiver before

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

The basic processing steps are:

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Design Goal

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

3 / 67

We discussed building a serial port receiver before

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

The basic processing steps are:

1. Detect the start bit

˝ This determines the timing of everything to follow

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Design Goal

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

3 / 67

We discussed building a serial port receiver before

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

The basic processing steps are:

1. Detect the start bit

˝ This determines the timing of everything to follow

2. Wait a baud and a half

˝ Centers our sample mid baud-interval

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Design Goal

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

3 / 67

We discussed building a serial port receiver before

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

The basic processing steps are:

1. Detect the start bit

˝ This determines the timing of everything to follow

2. Wait a baud and a half

˝ Centers our sample mid baud-interval

3. Sample each remaining data bit mid-baud

˝ Known baud rate determines the separation

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Design Goal

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

3 / 67

We discussed building a serial port receiver before

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

The basic processing steps are:

1. Detect the start bit

˝ This determines the timing of everything to follow

2. Wait a baud and a half

˝ Centers our sample mid baud-interval

3. Sample each remaining data bit mid-baud

˝ Known baud rate determines the separation

4. Report our result when done

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Design Goal

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

4 / 67

We discussed building a serial port receiver before

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

This also means that we’ll be done halfway through the stop bit

˝ The transmitter will still be busy, even though
˝ The receiver is already looking for the next start bit

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

One more requirement

Lesson Overview

Ź Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

5 / 67

Since our last discussion (about simulation)

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

We’ve learned that we need to synchronize the incoming bit

// I n i t i a l i z e e v e r y t h i n g to one (i d l e)
i n i t i a l { ck_uart , q_uart } = ´1;
always @ (posedge i_clk)

{ ck_uart , q_uart }
<= { q_uart , i_uart_rx } ;

˝ This should be negligible to the rest of the algorithm
˝ It will impact our formal verification properties

Receiver FSM

Lesson Overview

Design Goal

Ź Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

6 / 67

The receiver logic is just another state machine

i uart rx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

state 0 1 2 3 4 5 6 7 8 9 0

o stb

o data D

˝ Each state will require multiple clocks
˝ States 2-9 are exactly one baud in length
˝ States 1 is half again as long

– To account for the start bit, and
– To make sure we timeout mid-baud interval

˝ The o_stb signal will be one clock wide
˝ When o_stb is high, o_data contains the received data

– It is a don’t care value otherwise

Baud counter

Lesson Overview

Design Goal

Receiver FSM

Ź Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

7 / 67

Let’s work through timing all these transitions

˝ A counter, baud_counter, will count down the time until the
next state transition

˝ While we are in idle, it will remain at zero

i n i t i a l baud_counter = 0 ;
always @ (posedge i_clk)
i f (state == IDLE)
begin

baud_counter <= 0 ;
// . . .

Baud counter

Lesson Overview

Design Goal

Receiver FSM

Ź Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

8 / 67

Let’s work through timing all these transitions

˝ A counter, baud_counter, will count down the time until the
next state transition

˝ While we are in idle, it will remain at zero
˝ On a start bit, it will start counting a baud and a half

i n i t i a l baud_counter = 0 ;
always @ (posedge i_clk)
i f (state == IDLE)
begin

baud_counter <= 0 ;
i f (! ck_uart)

baud_counter

<= CLOCKS_PER_BAUD ´ 1 ’b1
+ CLOCKS_PER_BAUD /2 ;

// . . .

Baud counter

Lesson Overview

Design Goal

Receiver FSM

Ź Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

9 / 67

Let’s work through timing all these transitions

˝ A counter, baud_counter, will count down the time until the
next state transition

˝ While we are in idle, it will remain at zero
˝ On a start bit, it will start counting a baud and a half
˝ When it is not zero, it will count down to zero

always @ (posedge i_clk)
i f (state == IDLE)
begin

// . . .
end e l s e i f (baud_counter == 0)
begin

// . . .
end e l s e

baud_counter <= baud_counter ´ 1 ’b1 ;

Baud counter

Lesson Overview

Design Goal

Receiver FSM

Ź Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

10 / 67

Let’s work through timing all these transitions

˝ A counter, baud_counter, will count down the time until the
next state transition

˝ While we are in idle, it will remain at zero
˝ On a start bit, it will start counting a baud and a half
˝ When it is not zero, it will count down to zero
˝ When it reaches zero, we count down the next baud

i n i t i a l baud_counter = 0 ;
always @ (posedge i_clk)
i f (state == IDLE)
begin

// . . .
end e l s e i f (baud_counter == 0)
begin

baud_counter <= CLOCKS_PER_BAUD ´ 1 ’b1 ;

Baud counter

Lesson Overview

Design Goal

Receiver FSM

Ź Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

11 / 67

Let’s work through timing all these transitions

˝ A counter, baud_counter, will count down the time until the
next state transition

˝ While we are in idle, it will remain at zero
˝ On a start bit, it will start counting a baud and a half
˝ When it is not zero, it will count down to zero
˝ When it reaches zero, we count down the next baud
˝ Unless we reach the end of the word

// . . .
end e l s e i f (baud_counter == 0)
begin

baud_counter <= CLOCKS_PER_BAUD ´ 1 ’b1 ;
i f (state >= STOP)

baud_counter <= 0 ;

˝ . . . where it will remain at zero

Receiver State

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Ź Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

12 / 67

The receiver state follows the same conditions

˝ We start in IDLE, and remain in IDLE while ck_uart is high

i n i t i a l state = IDLE ;
always @ (posedge i_clk)
i f (state == IDLE) // 0
begin

// Wait u n t i l c k u a r t goes low
state <= IDLE ;
i f (! ck_uart)

// . . .

Receiver State

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Ź Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

13 / 67

The receiver state follows the same conditions

˝ We start in IDLE, and remain in IDLE while ck_uart is high
˝ When ck_uart goes low, we switch states

i n i t i a l state = IDLE ;
always @ (posedge i_clk)
i f (state == IDLE) // 0
begin

// Wait u n t i l c k u a r t goes low
state <= IDLE ;
i f (! ck_uart)

state <= BIT_ZERO ;
end e l s e // . . .

Receiver State

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Ź Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

14 / 67

Once we’ve seen a start bit

˝ We cycle through and receive each bit following, and
˝ Return to idle when we get to the stop bit

always @ (posedge i_clk)
//
end e l s e i f (baud_counter == 0)
begin

state <= state + 1 ;
i f (state >= STOP_BIT)

state <= IDLE ;
end

See any assertions you might need to make about the state?

Return Data

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Ź Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

15 / 67

On every state change

˝ Shift in one more bit of the answer

always @ (posedge i_clk)
i f ((baud_counter == 0)&&(state != STOP_BIT))

o_data <= { ck_uart , o_data [7 : 1] } ;

Return Strobe

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Ź Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

16 / 67

On the last and final transition

˝ Notify our environment of a received bit
˝ Just as we return to IDLE

i n i t i a l o_wr = 1 ’b0 ;
always @ (posedge i_clk)

o_wr <= (baud_counter == 0)
&&(state == STOP_BIT) ;

Return Strobe

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Ź Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

16 / 67

On the last and final transition

˝ Notify our environment of a received bit
˝ Just as we return to IDLE

i n i t i a l o_wr = 1 ’b0 ;
always @ (posedge i_clk)

o_wr <= (baud_counter == 0)
&&(state == STOP_BIT) ;

This should all be quite straight forward

˝ This isn’t really any harder than the transmitter

Formal Verification

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Ź
Formal
Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

17 / 67

Formally verifying this receiver . . . that’s harder
Let’s reflect upon the two basic types of properties we’ve created

˝ Contract properties

– Verify that a design does what it was intended to do
– These can be black-box properties

˝ Induction properties

– Verify that a design remains within the set of legal states
– These will always be white-box properties

And our two rules

˝ assume any input properties
˝ assert any local state and output properties

https://en.wikipedia.org/wiki/Black-box_testing
http://zipcpu.com/blog/2018/03/10/induction-exercise.html
https://en.wikipedia.org/wiki/White-box_testing

Formal Contract

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Ź Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

18 / 67

The contract for a serial port is straight forward

˝ If you send it a known transmission
˝ It should set o_wr when done, and
˝ o_data should match any expected result
˝ We can use our transmitter to send a known transmission

That’s the contract. That’s the easy part

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Induction Properties

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

19 / 67

The difficult part is setting up the induction properties

˝ We need to make certain our design remains in a consistent
state

– That includes not only the state of the receiver, and
– The state of the transmitter, but
– The two states must match!

˝ That means the transmitter can’t be sending bit two while we
are receiving bit six

˝ That also means that after the transmitter has sent four bits
the receiver must have received those same four bits

Coordinating the state between the receiver and the transmitter
is the challenging part

http://zipcpu.com/blog/2018/03/10/induction-exercise.html

Adjusting the transmitter

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

20 / 67

We’ll add two output ports to our transmitter for this purpose

˝ f_data

– This is the data the transmitter is sending
– We’ll need to match our received data with this at every

step of the way

˝ f_counter

– This will count clocks since the beginning of transmission
– We’ll use this to match the receiver’s state

We’ll call this adjusted transmitter f_txuart

˝ Since these extra ports are only necessary for formally
verifying the receiver

˝ They are inappropriate for an independent transmitter

f data

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

21 / 67

Capturing the data being sent is easy

always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

f_data <= i_data ;

It’s even easier, since . . .

˝ The transmitter already contained this value internally
˝ The transmitter verified its internal state against this value
˝ The transmitter finishes after the receiver

– So this value should be valid when we examine it

˝ We’ll just make this value an output

f counter

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

22 / 67

The transmit counter is conceptually simple

always @ (posedge i_clk)
i f (! o_busy)

f_counter <= 0 ;
e l s e

f_counter <= f_counter + 1 ;

Only we must now assert that

˝ This counter matches our transmitter’s internal state

f counter

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

23 / 67

Matching f_counter to the transmitter’s count-down counter

always @ (∗) // I n the t r a n sm i t t e r
case (state)
START : as se r t (f_counter

== CLOCKS_PER_BAUD´1́ counter) ;
BIT_ZERO : as se r t (f_counter

== 2∗CLOCKS_PER_BAUD´1́ counter) ;
BIT_ONE : as se r t (f_counter

== 3∗CLOCKS_PER_BAUD´1́ counter) ;
// . . .
endcase

Let’s look at this a little deeper

f counter

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

24 / 67

Let’s discuss these assertions

BIT_ZERO : as se r t (f_counter
== 2∗CLOCKS_PER_BAUD´1́ counter) ;

You may find this easier to understand if you draw it out

˝ f_counter starts at the beginning of time and counts up
˝ Our baud interval counter, counter, counts down each

interval

f counter

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

25 / 67

Let’s discuss these assertions

BIT_ZERO : as se r t (f_counter
== 2∗CLOCKS_PER_BAUD´1́ counter) ;

Notice the multiply for a moment

˝ Multiplies are normally bad

– Formal tools struggle to verify multiplies
– This multiplies two constants, so the result is constant
– So this works

That handles the internal values

˝ What about the inputs to f_txuart?

anyseq

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

26 / 67

Our receiver doesn’t have inputs for the formal transmitter

˝ We need to generate inputs for f_txuart
˝ (∗ anyseq ∗) can be used for that purpose
˝ (∗ anyseq ∗) is like (∗ anyconst ∗)

– The solver gets to pick the values

˝ Only (∗ anyseq ∗) values can change from clock to clock

– (∗ anyconst ∗) values are required to be constant

˝ Both types of values may be constrained by assumptions
˝ We’ll pass two inputs to the transmitter

// The w r i t e r e q u e s t i n pu t
(∗ anyseq ∗) reg f_tx_iwr ;
// The w r i t e data i n pu t
(∗ anyseq ∗) reg [7 : 0] f_tx_idata ;

Assumed Transmitter

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

27 / 67

Here’s our transmitter instantiation

(∗ anyseq ∗) reg f_tx_iwr ;
(∗ anyseq ∗) reg [7 : 0] f_tx_idata ;

wire f_tx_uart ;
/∗ i g n o r e d ∗/ wire f_tx_busy ;

wire [7 : 0] f_txdata ;
wire [24 ´1:0] f_tx_counter ;

f_txuart #(CLOCKS_PER_BAUD)
tx (i_clk , f_tx_iwr , f_tx_idata ,

f_tx_uart , f_tx_busy ,
f_txdata , f_tx_counter) ;

// Assume our i n pu t matches the t xua r t ’ s output
always @ (∗)

assume (i_uart_tx == f_tx_uart) ;

We’ll be working with f_txdata and f_tx_counter

Contract

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Ź
Induction
Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

28 / 67

We can now assert our receiver contract

˝ o_wr goes high once at the end of every word

always @ (∗)
as se r t (o_wr == (f_tx_counter

== 9 ∗ CLOCKS_PER_BAUD

+ CLOCKS_PER_BAUD / 2)) ;

˝ o_data has a copy of the transmitted information

always @ (∗)
i f (o_wr)

as se r t (o_data == f_txdata) ;

Problem: that’s not enough to pass induction!

http://zipcpu.com/blog/2018/03/10/induction-exercise.html

Induction

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Ź Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

29 / 67

Now we need to synchronize our partial results

always @ (∗)
case (state)
4 ’h2 : as se r t (o_data [7] == f_txdata [0]) ;
4 ’h3 : as se r t (o_data [7 : 6] == f_txdata [1 : 0]) ;
4 ’h4 : as se r t (o_data [7 : 5] == f_txdata [2 : 0]) ;
4 ’h5 : as se r t (o_data [7 : 4] == f_txdata [3 : 0]) ;
// . . . e t c
4 ’h9 : as se r t (o_data [7 : 0] == f_txdata [7 : 0]) ;
endcase

Even this isn’t enough, we need to match counters as well

Induction

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Ź Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

30 / 67

Matching the two counters is harder

˝ Following the end condition, the transmitter may have a half
clock period left

˝ After the transmitter starts, it can go two clocks through the
synchronizer before we leave IDLE

always @ (∗)
case (state)
4 ’h0 : begin i f (f_tx_uart)

as se r t ((f_tx_counter == 0)
| | f_tx_counter > 9 ∗ CLOCKS_PER_BAUD

+ CLOCKS_PER_BAUD /2) ;
e l s e

as se r t (f_tx_counter < 3) ;
end

Induction

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Ź Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

31 / 67

Matching the two counters is harder

˝ While waiting for the first bit, the two counters should be off
by a baud and a half

always @ (∗)
case (state)
// . . .
4 ’h1 : begin // S t a r t s t a t e

as se r t (CLOCKS_PER_BAUD+CLOCKS_PER_BAUD/2
´baud_counter == f_tx_counter ´2);

˝ Remember the two stage FF synchronizer, and
˝ The receiver is off cut from the transmitter by half a baud

Induction

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Ź Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

32 / 67

Matching the two counters is harder

˝ While waiting for the first bit, the two counters should be off
by a baud and a half

˝ The rest of the bits/states follow the same pattern

always @ (∗)
case (state)
// . . .
4 ’h2 : begin // S t a r t s t a t e

as se r t (2∗ CLOCKS_PER_BAUD+CLOCKS_PER_BAUD/2
´ baud_counter == f_tx_counter ´2);

˝ Don’t forget that baud_counter counts down,
˝ While f_tx_counter counts up

Formal

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Ź Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

33 / 67

Beginners often struggle to understand how the transmitter and
receiver can get out of synch during induction

˝ This gives them no end of trouble
˝ This doesn’t happen in a bounded check, but
˝ A bounded check can’t handle 10 periods of 868 clocks
˝ Induction is the key to verifying our contract
˝ Several extra assertions were required to get there

Synchronizing the two modules is key to success

˝ We’ll discuss cover() next
˝ Then you should be able to finish the proof

http://zipcpu.com/blog/2018/03/10/induction-exercise.html
http://zipcpu.com/blog/2018/03/10/induction-exercise.html

Cover

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Ź Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

34 / 67

We should cover our solution as well

always @ (posedge i_clk)
cover (o_wr) ;

˝ But how shall we cover something that takes 10 ˚ 868 clocks?
˝ Solution: Lower the clocks per baud, but just for cover
˝ This can be done in the SymbiYosys file

SymbiYosys and Cover

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Ź Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

35 / 67

Remember tasks?

˝ You can use tasks to selectively adjust parameter values

[tasks]
cvr

prf

[opt ions]
prf : mode prove

cvr : mode cover

cvr : depth 192
prf : depth 4
[s c r i p t]
read ´formal f_txuart . v
read ´formal rxuart . v
cvr : hierarchy ´top rxuart \

´chparam CLOCKS_PER_BAUD 8
prep ´top rxuart

http://zipcpu.com/zipcpu/2018/12/20/sby-makefile.html

SymbiYosys and Cover

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Ź Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

35 / 67

Remember tasks?

˝ You can use tasks to selectively adjust parameter values

[tasks]
cvr

prf

[opt ions]
prf : mode prove

cvr : mode cover

cvr : depth 192
prf : depth 4
[s c r i p t]
read ´formal f_txuart . v
read ´formal rxuart . v
cvr : hierarchy ´top rxuart \

´chparam CLOCKS_PER_BAUD 8
prep ´top rxuart

This changes our CLOCKS_PER_BAUD pa-
rameter to 8, but only for our cover task

http://zipcpu.com/zipcpu/2018/12/20/sby-makefile.html

SymbiYosys and Cover

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Ź Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

35 / 67

Remember tasks?

˝ You can use tasks to selectively adjust parameter values

[tasks]
cvr

prf

[opt ions]
prf : mode prove

cvr : mode cover

cvr : depth 192
prf : depth 4
[s c r i p t]
read ´formal f_txuart . v
read ´formal rxuart . v
cvr : hierarchy ´top rxuart \

´chparam CLOCKS_PER_BAUD 8
prep ´top rxuart

This adjusts our depth to 192, but again
only for the cover task

http://zipcpu.com/zipcpu/2018/12/20/sby-makefile.html

Cover Properties

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Ź Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

36 / 67

What might we want to cover?

˝ A successful result

always @ (posedge i_clk)
cover (o_wr) ;

˝ A second successful result? Two 8’hf9s received in a row?

i n i t i a l f_first_hit = 1 ’b0 ;
always @ (posedge i_clk)
i f ((o_wr)&&(o_data == 8 ’ hf9)) ;

f_first_hit <= 1 ’b1 ;

always @ (posedge i_clk)
cover ((f_first_hit)&&(o_wr)

&&(o_data == 8 ’ hf9)) ;

SymbiYosys and Cover

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Ź Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

37 / 67

Cover is important, don’t skip it!

˝ Using cover() on this project, I discovered a bug in our
transmitter

˝ The transmitter should be able to transmit two characters in
20˚CLOCKS_PER_BAUD

˝ Our original transmitter took one clock too long

– Two characters took 20˚CLOCKS_PER_BAUD`1 at first

˝ I found the bug by examining the cover trace

You now know enough to finish the rest of the formal proof on
your own

Formal Exercise

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Ź Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

38 / 67

Formally verify that your receiver works!

˝ As always, some bugs have been hidden in the example code

Then, make it better

˝ Create a register called zero_baud_counter

reg zero_baud_counter ;

˝ Make it change on @(posedge i_clk) clock only
˝ Verify that it is true only if baud_counter == 0

always @ (∗)
as se r t (zero_baud_counter

== (baud_counter == 0)) ;

You may start with the (mostly correct) receiver in exercise 9

Formal Exercise

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Ź Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Conclusion

39 / 67

Question for thought:

˝ Imagine you wanted to build a receiver that could handle
multiple baud rates

– For example, all 24-bit divisions of your clock rate

˝ How would you verify such a receiver?

Simulation

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Ź Simulation

UARTSIM

Exercise!

Hardware

Conclusion

40 / 67

Simulation outline

˝ We’ll read from one file
˝ “Transmit” the data to our serial port

– The UARTSIM accepts data to transmit on STDIN

˝ Read the results from the port

– We’ll dump these out STDOUT, and

˝ Verify the result matches the original file

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

41 / 67

Let’s dig into this UART Co-simulator

˝ Anytime we are idle,
˝ Check for a character to transmit on STDIN

i f (m tx state == TXIDLE) {

ch = getchar ();
// ...

˝ Problem: this will hang our simulation if no character is
available

˝ We need to check if there’s a character available first
˝ But without stopping if not

https://en.wikipedia.org/wiki/Co-simulation

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

42 / 67

The poll() system call provides what we need

i f (m tx state == TXIDLE) {

s t r u c t p o l l f d pb;
pb. fd = STDIN FILENO;

pb. events = POLLIN;

i f (p o l l (&pb, 1, 0) < 0)

pe r r o r ("Polling error:");

i f (pb. r e ven t s & POLLIN) {

char buf [1];

nr = read (STDIN FILENO,buf ,1);
i f (1 == nr) {

// ...

˝ This solves the hanging problem
˝ Now we just need to transmit the character to our receiver

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

43 / 67

The transmit logic follows what we’ve rehearsed already

˝ On new data, set two shift registers

– One containing the data plus a stop bit
– One containing a bit mask of 10 busy intervals

(One interval is implied, so 0x1ff)
– Then clear the start bit and start a baud counter

i f (m tx state == TXIDLE) {

// on start

m tx data = 0x100|(buf [0]&0 x 0 f f);

m tx busy = 0 x 1 f f ; // Busy reg

m tx state = TXDATA; // New state

o rx = 0; // Clear UART signal

m tx baudcounter = m baud counts -1;

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

44 / 67

The transmit logic follows what we’ve rehearsed already

˝ Whenever our timer runs out

– Shift everything over, and
– Restart the counter

} e l s e i f (m tx baudcounter <= 0) {

m tx data >>= 1;

m tx busy >>= 1;

m tx baudcounter = m baud counts -1;

o rx = m tx data &1;

˝ But ... how do we leave this loop?

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

45 / 67

The transmit logic follows what we’ve rehearsed already

˝ Except . . .

– When we are no longer busy, and
– When restarting the last counter

} e l s e i f (m tx baudcounter <= 0) {

i f (!m tx busy)
m tx state == IDLE;

e l s e {

// ...

i f (m tx busy == 1)

m tx baud counter --;
} e l s e { // ...

˝ Wait, why is there one less clock on the last step?

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

46 / 67

The transmit logic follows what we’ve rehearsed already

˝ One less clock on the last step is required because

– It takes a clock to recognize the idle, and then to
– Return m tx state to IDLE

} e l s e i f (m tx baudcounter <= 0) {

i f (!m tx busy)
m tx state == IDLE;

e l s e {

// ...

i f (m tx busy == 1)

m tx baud counter --;
} e l s e { // ...

˝ The last piece is simple

UARTSIM

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

47 / 67

The transmit logic follows what we’ve rehearsed already

˝ Finally, if we are not IDLE, then the counter is not zero

– Decrement the baud counter
– Return a bit to the simulation

i f (m tx state == TXIDLE) {

// ...

} e l s e i f (m tx baudcounter <= 0) {

// ...

} e l s e { // ...

m tx baudcounter --;
o rx = m tx data & 1;

}

r e tu rn o tx ;

˝ That’s the logic in the (simulated) transmitter

Verilator TB

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

48 / 67

We need a test bench that can

˝ Create a known input stream into our receiver

– We can use another psalm.txt file for this

˝ Produce an output
˝ Compare the output with the input

The fact that UARTSIM uses stdin will make this problematic

The setup

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

49 / 67

Let’s create two pipes, then split our test bench into two:

˝ This will allow us to write to the UARTSIM, and
˝ Read and verify the result

Verilator TB

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

50 / 67

Let’s create two pipes, then split our test bench into two:

1. The first process, the parent, will

˝ Read the test data from a file
˝ Write it into the pipe, sending it to the child’s stdin

˝ Read the results back from the pipe
˝ Compare the results with the original file

2. The second process will run our simulation

˝ Accept data from stdin

˝ Write it to the serial port via the UARTSIM
˝ Receive the results from the receiver
˝ Write the results out to the parent via stdout

It’s time to learn about the fork() system call

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

fork()

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

51 / 67

The fork() system call splits a process into two

˝ One process will be called the parent

– This process maintains the identity of the original process

˝ The other process is the child

i f ((c h i l d p i d == f o r k ()) != 0) {

// Code to run in the parent

// (the original process)

} e l s e {

// Code to run in the child

}

Before we fork(), we’ll need to create two pipe()s to
communicate between processes

pipe()

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

52 / 67

The pipe() system call creates a pipe

˝ We’ll need two: one for each direction

i n t c h i l d s s t d i n [2], c h i l d s s t d o u t [2];

i f ((p ipe (c h i l d s s t d i n)!=0)

|| (p ipe (c h i l d s s t d o u t) != 0)) {

// Deal with any errors

e x i t (EXIT FAILURE);
}

// Now we can call fork()

˝ We’ll replace the child’s stdin/stdout with these pipes
˝ The parent will thus control the child’s stdin/stdout

pipe()

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

53 / 67

The pipe() system call creates a unidirectional pipe

˝ Data written to childs stdin [1] can be read from
childs stdin [0], same for childs stdout

˝ The parent closes the read end of the childs stdin

c l o s e (c h i l d s s t d i n [0]);

– Only the child will read from this pipe

˝ The parent also closes the write end of childs stdout

c l o s e (c h i l d s s t d o u t [1]);

– Only the child will write to this pipe

˝ The child will do the opposite

pipe()

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

54 / 67

The child also needs to map these pipes to stdin/stdout

˝ First, map childs stdin [0] to stdin
˝ Done by first closing the file descriptor to be replaced
˝ Then duplicating the pipe’s file descriptor

c l o s e (STDIN FILENO);

dup(c h i l d s s t d i n [0]);

˝ The duplicated file descriptor naturally replaces the one that
was just closed

˝ We’ll repeat this for stdout

c l o s e (STDOUT FILENO);

dup(c h i l d s s t d o u t [1]);

We can now build and run our test!

The setup

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

55 / 67

This is what we’ve just created

˝ Two processes, where the child’s stdin/stdout are controlled
by the parent

˝ These will be inter-process pipes
˝ The parent’s stdin/stdout will remain unchanged

In the parent

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

56 / 67

In the parent, we send the message to the slave

wr i t e (c h i l d s s t d i n [1], s t r i n g , f l e n);

And read it back out

rd = read (c h i l d s s t d o u t [0], rdbuf , f l e n);

f o r (i =0; i < rd ; i ++) {

putchar (rdbuf [i]);
i f (rdbuf [i] != s t r i n g [i]) {

f a i l = i ;
break ;

}

}

Don’t forget to check for errors!

In the Slave

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

57 / 67

The slave’s code looks like what we’ve done with Verilator before

˝ First the setup

// Create a test bench

tb = new TESTB<Vrxuart >;
// Start a VCD trace

tb -> opentrace ("rxuart.vcd");
// Create a UART simulator

uar t = new UARTSIM();

// Set the baud rate

// ...

// and make sure the port starts idle

tb ->m core -> i u a r t r x = 1;

˝ Now we can build our test

In the Slave

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

Ź UARTSIM

Exercise!

Hardware

Conclusion

58 / 67

The slave matches what we’ve done with Verilator before

˝ First the setup
˝ Then run the testbench

wh i l e ((te s t count ++ < LARGE NUMBER)
&&(num received < f l e n)) {

tb -> t i c k ();
tb ->m core -> i u a r t r x = (* uar t)(1);
// Any time we receive a character

i f (tb ->m core ->o wr) {

num received ++;
// Send it to stdout , and

// thus to the parent via

// the pipe

putchar (tb ->m core -> o data);
}

} e x i t (EXIT SUCCESS);

Exercise!

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Ź Exercise!

Hardware

Conclusion

59 / 67

Does your component simulation work?

˝ If not, debug as necessary

Once you get to real hardware

˝ You will no longer have access to every internal signal

– You might only ever get an LED, sometimes not even that

˝ Debugging only gets harder in the next step

Many student’s have asked, why doesn’t my serial port work?

˝ The secret they were missing?

– Avoid debugging on the hardware! Formal first, then
simulation, then hardware once the bugs are gone

˝ If you know your design works, that will eliminate many
possible causes of error in hardware

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Hardware

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

60 / 67

Let’s build a design and get it to work with your hardware

Debugging this design in hardware can be a challenge!

˝ A lot of things can go wrong–even if our code works

– Subtle clock differences can be a challenge
– Terminal setup can be an issue

˝ We’ll can now use the button, the LED, and the UART
output to debug

˝ You should also know how to fully simulate this design

Hardware

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

61 / 67

Common problems include:

˝ The wrong baud rate

– You may receive either nothing or perhaps garbage

˝ Setting hardware flow control (turn it off for now)

– Nothing comes through at all

˝ Missing carriage returns

– You’ll see all the data, but it quickly vanishes off the edge
of the screen

The message was carefully chosen to use the full 80 character
width

˝ This will make it easier to spot missing characters

Hardware

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

62 / 67

The rarer ugly problem

˝ One student saw only every other character of the message
˝ This was traced to a faster transmitter than the receiver
˝ . . . and the following fragile logic

always @ (∗)
begin

tx_wr = rx_stb ;
tx_data = rx_data ;

end

˝ If the transmitter was still busy when rx_stb was true

– It would miss the incoming data
– Remember: o_wr (rx_stb above) is only high for a single

cycle

˝ One solution: Adjust your terminal to produce two stop bits

Hardware

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

63 / 67

A better solution to the rare but ugly problem

˝ A register between RX and TX will help smooth over subtle
clock rate differences

i n i t i a l tx_wr = 1 ’b0 ;
always @ (posedge i_clk)
i f (rx_stb)
begin

tx_wr <= 1 ’b1 ;
tx_data <= rx_data ;

end e l s e i f (! tx_busy)
tx_wr <= 1 ’b0 ;

˝ Can you see any lingering problems with this solution?

Debugging

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

64 / 67

You can also set the LED on some internal condition:

˝ if (rx_stb) for example, or
˝ if (rx_stb && (rx_data == ’P’)) as another

reg [2 5 : 0] led_counter ;
i n i t i a l { o_led = 0 , led_counter } = 0 ;
always @ (posedge i_clk)
i f (condition)
begin

led_counter <= 0 ;
o_led <= 1 ’b1 ;

end e l s e i f (&led_counter)
o_led <= 1 ’b0 ;

e l s e
led_counter <= led_counter + 1 ’b1 ;

˝ This can help determine if your problem is a transmitter or
receiver issue

Debugging

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

65 / 67

You can also use our transmit word design, txdata:

˝ Using our button counter design, you can replace the
transmitters output with any (useful) internal 32-bit value

˝ You did test the transmitter design and get it running, right?
˝ You should be able to guess and confirm potential problems
˝ This includes finding the cause of any missing characters

Debugging

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Ź Hardware

Conclusion

66 / 67

Other means of debugging include:

˝ Sending internal logic wires to external ports

– And examining them with logic analyzer, oscilloscope, or
even another FPGA

˝ Connecting your device to another serial port / terminal
˝ Swapping USB cables

– Much to my surprise, USB cables can and do break
– If things aren’t working, don’t forget to try another cable

Ź That this solution works sometimes has surprised more
than one skeptic designer

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter

Conclusion

Lesson Overview

Design Goal

Receiver FSM

Baud counter

Receiver State

Return Data

Formal Verification

Formal Contract

Induction Properties

Induction

Cover

Formal Exercise

Simulation

UARTSIM

Exercise!

Hardware

Ź Conclusion

67 / 67

What did we learn this lesson?

˝ How to build and verify a serial port receiver

– How to connect a formal-only transmitter to check if the
receiver truly does work

– A serial port requiring 868 clocks per baud will take 8,680
clocks per character. With induction, we can verify the
serial port in less than 5 clocks

˝ How to build a simulated serial port transmitter

– How to control items sent to the serial port co-simulator
via stdin and stdout

˝ How important the fundamentals are to hardware debugging

– Counters, LEDs, Buttons, hex data output, etc.

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
http://zipcpu.com/blog/2018/03/10/induction-exercise.html
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Co-simulation

	
	Lesson Overview
	Design Goal
	Receiver FSM
	Baud counter
	Receiver State
	Return Data
	Formal Verification
	Formal Contract
	Induction Properties
	Induction
	Cover
	Formal Exercise
	Simulation
	UARTSIM
	Exercise!
	Hardware
	Conclusion

