
Gisselquist
Technology, LLC

8. Using Block RAM

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

2 / 56

Three types of FPGA memory

˝ Flip-flops
˝ Distributed RAM
˝ Block RAM

Block RAM is special within an FPGA

˝ It is fast and abundant
˝ Requires one clock to access
˝ Can only be initialized at startup
˝ Yet there are some logic requirements to use it

Objectives

˝ Be able to create block RAM resources
˝ Understand the requirements of block RAMs
˝ Learn how to verify a component containing a block RAM

Lesson Overview

Ź Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

3 / 56

Let’s also take a quick look at synchronous resets

˝ Learn the two types of resets
˝ Reset logic follows one of two forms

Extra Objectives

˝ Know the two forms of synchronous reset logic
˝ Know how to verify a design with a synchronous reset

Design Goal

Lesson Overview

Ź Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

4 / 56

Let’s rebuild our Hello World design, but make the message
longer

˝ We’ll use a memory to capture our longer message

˝ Then read from this memory, and . . .
˝ Transmit it out the serial port

Goal Design

Lesson Overview

Ź Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

5 / 56

Here’s a basic block diagram

˝ We’ll re-use the serial port transmitter, txuart.v
˝ We’ll capture our message in a block RAM, and . . .
˝ We’ll use a top level module to coordinate it all, memtx.v

– We’ll infer the block RAM within our memtx.v design

But what is on-chip RAM and how shall we declare and use it?

On-Chip Memory

Lesson Overview

Design Goal

Ź On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

6 / 56

There’s a special type of declaration for memory in Verilog:

reg [W´1:0] ram [0 : MEMLN ´1] ;

˝ This defines a memory of MEMLN elements,

where each element is W bits long

˝ Verilog allows MEMLN to be anything
˝ Practically, MEMLN must only ever be a power of two, 2N , in

order to avoid simulation/hardware mismatch
˝ I tend to define my memories as

reg [W´1:0] ram [0:(1<<LGMEMSZ) ´1] ;

– This forces the power of two requirement
– LGMEMSZ can also be used as the width of the address

Declaring On-Chip Memory

Lesson Overview

Design Goal

Ź On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

7 / 56

There’s a special type of declaration for memory in Verilog:

reg [W´1:0] ram [0:(1<<LGMEMSZ) ´1] ;

The synthesis tool will decide how to implement this

˝ Flip-Flops

– Useful for small numbers of bits
– Very inefficient for implementing memory on an FPGA

˝ Distributed RAM

– Useful for small, localized RAM needs
– Typically allocated one-bit at a time for memory sizes of

2
6 elements (Ex. Xilinx’s SLICEM)

˝ Block RAM

– Useful for larger and wider RAM needs
– Using block RAM requires that you follow special rules

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

8 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block

always @ (posedge i_clk)
i f (write)

ram [write_addr] <= write_value ;

always @ (posedge i_clk)
i f (read)

read_value <= ram [read_addr] ;

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

9 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once

always @ (posedge i_clk)
i f (i_reset)
begin

// Thi s i s i l l e g a l ! B lock
// RAM cannot be re´ i n i t i a l i z e d
f o r (i=0; i<ramsize ; i=i+1)

ram [i] <= 0 ;
end e l s e i f (i_stb)

ram [addr] <= value ;

This is often an unexpected frustration for beginners.

˝ The solution is to rewrite your algorithm so you don’t need to
do this

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

10 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if

always @ (posedge i_clk)
i f (A)

value <= // someth ing ;
e l s e i f (B)

value <= // someth ing e l s e ;
e l s e i f (C)

// Don ’ t do t h i s e i t h e r !
value <= ram [addr] ;

e l s e i f (D)
// l o g i c c o n t i n u e s . . .

Such logic often ends up being replaced by flip-flops

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

11 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list

// Don ’ t do t h i s
output reg [W´1:0] ram [0:(1<<LGMEMSZ) ´1] ;

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

12 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

// Many s y n t h e s i z e r s w i l l t u rn t h i s i n t o FFs
always @ (posedge i_clk)
i f (write_enable)
begin

B <= // some l o g i c ;
C <= // someth ing e l s e ;
ram [addr] <= value ;

end

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

13 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

Some synthesizers/hardware allow byte enables

always @ (posedge i_clk)
i f (write_enable)
begin

i f (en [1])
ram [addr] [1 5 : 8] <= value [1 5 : 8] ;

i f (en [0])
ram [addr] [7 : 0] <= value [7 : 0] ;

end

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

14 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

Some synthesizers/hardware allow write-through

˝ Where the value being written may be read on the same clock

always @ (posedge i_clk)
begin

i f (write_enable)
mem [addr] = wvalue ;

rvalue = mem [addr] ;
end // Note the non´b l o c k i n g no t a t i o n !

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

15 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

Some synthesizers/hardware allow write-through

˝ Where the value being written may be read on the same clock

– This would be ideal for a CPU register file

˝ It’s not uniformly supported across our chosen tools/vendors
˝ Know your hardware, synthesizer, and simulator
˝ We’ll pretend this feature does not exist in this tutorial

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

16 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

If you fail to follow these rules,

You might get something other than block RAM, or
You’re design might fail to synthesize entirely

This is a common reason for synthesis failure

Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

16 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

If you fail to follow these rules,

You might get something other than block RAM, or
You’re design might fail to synthesize entirely

This is a common reason for synthesis failure

˝ Always keep an eye on your RAM and LUT usages
˝ Something out of bounds may be caused by this

If you suspect this is a problem, break your design into smaller
and smaller components until you find out what’s going on

Distributed RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

17 / 56

When is distributed RAM used?

˝ If the memory size is small (32 elements or less)
˝ If the memory is read without a clock

always @ (∗)
rvalue = mem [addr] ;

// Or e q u i v a l e n t l y
ass ign rvalue = mem [addr] ;

˝ Obviously, only if the device has distributed RAM

– iCE40 devices have no distributed RAM

Initializing Memory

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Ź

Initializing
Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

18 / 56

How might we initialize our RAM?

˝ We could use assignments within an initial block

reg [3 1 : 0] ram [0 : 8 1 9 1] ;

i n teger k ;
i n i t i a l begin

fo r (k=0; k <8192; k=k+1)
ram [k] = 0 ;

// We can a l s o s e t s p e c i f i c v a l u e s
ram [5] = 7 ;
ram [8 1 90] = 5 ;
// e t c .

end

˝ When using Xilinx’s ISE, this is the only way I’ve managed to
initialize RAM

Initializing Memory

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Ź

Initializing
Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

19 / 56

How might we initialize our RAM?

˝ We could use assignments within an initial block

– Verilator (currently) complains about non-blocking initial

assignments

// Thi s w i l l g e n e r a t e a V e r i l a t o r warn ing
i n i t i a l ram [8 1 90] <= 5 ;

– Yosys (currently) complains about blocking initial

assignments

// Thi s w i l l g e n e r a t e a Yosys warn ing
i n i t i a l ram [8 1 90] = 5 ;

If you don’t redefine any values, both will still work

˝ In this case, you may ignore the warnings

Initializing Memory

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Ź

Initializing
Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

20 / 56

How might we initialize our RAM?

˝ We could use a $readmemh function call (recommended)

reg [3 1 : 0] ram [0 : 8 1 9 1] ;
i n i t i a l $readmemh (FILE_NAME , ram) ;

˝ Each word of the file FILE_NAME has format %0*x

012345678
. . . .

˝ Separate each RAM word by white space
˝ Number of digits is based upon the width of the RAM word

– Our example above shows a 32-bit word

˝ Xilinx’s ISE has a known bug that prevents $readmemh from
working. Vivado doesn’t have this bug.

Initializing Memory

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Ź

Initializing
Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

21 / 56

How might we initialize our RAM?

˝ We could use a $readmemh function call (recommended)

reg [3 1 : 0] ram [0 : 8 1 9 1] ;
i n i t i a l $readmemh (FILE_NAME , ram) ;

˝ Alternatively, lines can begin with @(hexadecimal) addresses

@000000e0 2c 20 61 20 6e 65 77 20 6e 61 74 . . .
@000000f0 63 6f 6e 63 65 69 76 65 64 20 69 . . .
. . . .

– This example shows a series of 8-bit characters
– Sixteen per line

˝ This form makes it possible to skip elements
˝ We’ll build one of these files for our project later

Initializing Memory

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Ź

Initializing
Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

22 / 56

How might we initialize our RAM?

˝ We could use a $readmemh function call (recommended)

reg [3 1 : 0] ram [0 : 8 1 9 1] ;
i n i t i a l $readmemh (FILE_NAME , ram) ;

˝ On-chip RAM can only be initialized in an initial block
˝ Cannot re-initialize a block RAM in this fashion later without

reconfiguring (i.e. reloading) the FPGA

Generating the Hex file

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

23 / 56

Let’s generate a hex file that we can use with $readmemh

˝ Use a C++ program
˝ We’ll call this program genhex

˝ Much of the program is boilerplate and error checking
˝ We’ll skip most of this boilerplate now, and instead

focus on the interesting parts

You can find the entire genhex program with the course materials

Generating the Hex file

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

24 / 56

Let’s build our hex file

˝ We’ll prefix each line with an address

i n t l i n e l e n = 0;

i n t ch , addr = 0;

f p r i n t f (fout , "@%08x ", addr);

l i n e l e n = 10;

˝ Don’t forget that the address begins with an @ sign

Generating the Hex file

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

25 / 56

Let’s build our hex file

˝ We’ll prefix each line with an address
˝ Process one character at a time

// Read one character from our file

wh i l e ((ch = f g e t c (fp))!=EOF) {

// and process it if we read

// a non -empty character

// ...

}

Generating the Hex file

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

26 / 56

Let’s build our hex file

˝ We’ll prefix each line with an address
˝ Process one character at a time
˝ The values out are simply hex characters

// ...

wh i l e ((ch = f g e t c (fp))!=EOF) {

f p r i n t f (fout , "%0*x ",

(nb i t s +3)/4, ch & 0 x 0 f f);

l i n e l e n += 3;

addr ++;

// ...

˝ We can use nbits to make the width generic
˝ In this example, nbits = 8 so we only need two hex digits

each

Generating the Hex file

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

27 / 56

Let’s build our hex file

˝ We’ll prefix each line with an address
˝ Process one character at a time
˝ The values are just simply hex characters
˝ After 56 bytes, start a new line with a new address

wh i l e ((ch = f g e t c (fp))!=EOF) {

// ...

i f (l i n e l e n >= 56) {

// New line starting with

// the current address

f p r i n t f (fout , "\n@%08x ", addr);

l i n e l e n += 10;

}

} f p r i n t f (fout , "\n");

Generating the Hex file

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

28 / 56

One task remains: adding the hexfile generation to our Makefile

˝ Our target is “memfile.hex”
˝ It depends upon genhex, and our text file, psalm.txt

memfi le.hex: genhex psalm. t x t

./genhex psalm. t x t

˝ genhex must also be built

– It depends upon genhex.cpp

genhex: genhex.cpp

g++ genhex.cpp -o genhex

˝ Don’t forget to make sure memfile.hex is built before it’s
needed

Voila! A hex file that will change anytime psalm.txt does

Using the hexfile

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Ź Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

29 / 56

After all that work,

˝ We can now declare and initialize our memory

reg [7 : 0] tx_memory [0 : 2 0 4 7] ;

i n i t i a l $readmemh (”memf i l e . hex ” , tx_memory) ;

Next, we’ll need to discuss resets

Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

30 / 56

There are two types of resets

˝ Asynchronous resets

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk or negedge i_areset)
i f (i_areset)

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are more complex than their synchronous counterparts
˝ Often require being asserted for many cycles, and
˝ Released on a clock edge
˝ Poor design can lead to radio interference triggering an

internal asynchronous reset

Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

30 / 56

There are two types of resets

˝ Asynchronous resets

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk or negedge i_areset)
i f (i_areset)

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are more complex than their synchronous counterparts
˝ Often require being asserted for many cycles, and
˝ Released on a clock edge
˝ Poor design can lead to radio interference triggering an

internal asynchronous reset

– This is bad.

Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

30 / 56

There are two types of resets

˝ Asynchronous resets

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk or negedge i_areset)
i f (i_areset)

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are more complex than their synchronous counterparts
˝ Often require being asserted for many cycles, and
˝ Released on a clock edge
˝ Poor design can lead to radio interference triggering an

internal asynchronous reset

– This is bad. We will avoid these in this tutorial

Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

31 / 56

There are two types of resets

˝ Asynchronous resets, and
˝ Synchronous resets

– These are set and released on clock tick

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk)
i f (i_reset)

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are simple to build and use

Let’s implement a synchronous reset to this design

Synchronous Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

32 / 56

Many designs use a synchronous reset

˝ Values responsive to a reset should also have an initial value
˝ The initial value and the reset value must match

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk)
i f (i_reset)

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ I like this form of a reset, but
˝ It requires that every register set by this block gets reset as

well

The original Hello World design included no reset

Synchronous Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

33 / 56

Many designs use a synchronous reset

˝ Values responsive to a reset should also have an initial value
˝ An alternate form of reset needs to be used if some values

need to be reset within the block and others don’t

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk)
begin

// Your l o g i c would come
// f i r s t , then . . .

i f (i_reset)
// Ov e r r i d e s the l o g i c above
tx_index <= 0 ;

end

˝ This is a more generic form, useful for all purposes

Synchronous Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

34 / 56

Why might you need a synchronous reset?

˝ Sometimes internal or external conditions will require a reset

– Ex: An embedded CPU crash, or watchdog timer timeout
might cause a CPU to need to be reset

˝ Not all technologies support initial values

– For example, if you want to create FPGA+ASIC support,
you design will need a reset

˝ Sometimes it just helps to start over
˝ A (debounced) button can be used to create a reset

Let’s use a synchronous reset in our design

Overview

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Ź Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

35 / 56

Here’s how our design is going to work

Overview

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Ź Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

36 / 56

Here’s how our design is going to work

˝ We’ll send our message once per second
˝ A counter, hz_counter, will count each second
˝ When hz_counter reaches zero, tx_restart will signal the

rest of the design to restart

This much should be fairly familiar

Overview

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Ź Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

37 / 56

Here’s how our design is going to work

˝ tx_index will capture our position in the message stream
˝ We’ll read tx_data from memory, to know what to transmit

Overview

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Ź Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

38 / 56

Here’s how our design is going to work

˝ tx_stb will request a byte to be transmitted
˝ Once the whole message has been transmitted,
˝ tx_stb will deactivate until the next tx_restart

Are you ready to examine some Verilog?

Restarting

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Ź Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

39 / 56

Here’s the one-second counter, hz_counter

// We’ l l s t a r t our coun t e r j u s t b e f o r e the
// top o f the second , to g i v e e v e r y t h i n g
// a chance to i n i t i a l i z e
i n i t i a l hz_counter = 28 ’ h16 ;
always @ (posedge i_clk)
i f (i_reset)

hz_counter <= 28 ’ h16 ;
e l s e i f (hz_counter == 0)

hz_counter <= CLOCK_RATE_HZ ´ 1 ’b1 ;
e l s e

hz_counter <= hz_counter ´ 1 ’b1 ;

Restarting

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Ź Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

39 / 56

Here’s the one-second counter, hz_counter

// We’ l l s t a r t our coun t e r j u s t b e f o r e the
// top o f the second , to g i v e e v e r y t h i n g
// a chance to i n i t i a l i z e
i n i t i a l hz_counter = 28 ’ h16 ;
always @ (posedge i_clk)
i f (i_reset)

hz_counter <= 28 ’ h16 ;
e l s e i f (hz_counter == 0)

hz_counter <= CLOCK_RATE_HZ ´ 1 ’b1 ;
e l s e

hz_counter <= hz_counter ´ 1 ’b1 ;

˝ Question: What assertion(s) does this logic require?

Restarting

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Ź Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

40 / 56

Once a second, we’ll set tx_restart

i n i t i a l tx_restart = 0 ;
always @ (posedge i_clk)

tx_restart <= (hz_counter == 1) ;

Do you see a formal property hiding in here?

always @ (∗)
as se r t (tx_restart == (hz_counter == 0)) ;

Practice writing assertions as you see relationships!

Mem Address

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Ź Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

41 / 56

We’ll need an address to read from memory

// Number o f b y t e s i n our message
parameter MSGLEN = 1600 ;

i n i t i a l tx_index = 0 ;
always @ (posedge i_clk)
i f (i_reset)

tx_index <= 0 ;
e l s e i f ((tx_stb)&&(!tx_busy))
begin // Advance anyt ime a c h a r a c t e r was

// accep ted by the s e r i a l port ,
i f (tx_index == MSGLEN´1)

// End o f message
tx_index <= 0 ;

e l s e

tx_index <= tx_index + 1 ’b1 ;
end

Reading from Memory

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Ź Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

42 / 56

Memory reads take one clock

always @ (posedge i_clk)
tx_data <= tx_memory [tx_index] ;

Remember our rules from earlier?

˝ We might have also chosen to use a read enable
˝ It wasn’t necessary for this design though

When to transmit

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Ź Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

43 / 56

As with Hello World, tx_stb indicates we have a character to
transmit

i n i t i a l tx_stb = 1 ’b0 ;
always @ (posedge i_clk)
i f (i_reset)

tx_stb <= 1 ’b0 ;
e l s e i f (tx_restart)

// S t a r t t r a n sm i t t i n g anyt ime
// t x r e s t a r t i s t r u e
tx_stb <= 1 ’b1 ;

e l s e i f ((tx_stb)&&(!tx_busy)
&&(tx_index >= MSGLEN´1))

// Stop when we get to the end
// o f the message
tx_stb <= 1 ’b0 ;

Serial Port

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Ź Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

44 / 56

We’ll skip the serial port details here

˝ We built this earlier
˝ We also showed how to abstract the serial port earlier
˝ Even our simulation script is nearly identical to Hello World

Feel free to go back and review if you don’t remember these

Next Steps

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Ź Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

45 / 56

That’s the basics of our design!

˝ We’ve already built our hex file, so
˝ We can now move on to formal verification!

Formal Verification

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Ź

Formal
Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

46 / 56

Formally verifying a component using memory requires:

˝ Assuming a constant address
˝ Asserting properties for the value at that address
˝ Usually requires examining no more than a single address

We can assume a constant value using the (∗ anyconst ∗)

attribute

(∗ anyconst ∗) reg [1 0 : 0] f_const_addr ;

˝ This allows the solver to pick any value for f_const_addr
˝ As long as it is constant
˝ If even one value can make your design fail,

the solver will find it

Let’s see how this works

Formal Verification

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Ź

Formal
Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

47 / 56

Let’s create a value to match our memory at

(∗ anyconst ∗) reg [1 0 : 0] f_const_addr ;

˝ We’ll call this f_const_value

reg [7 : 0] f_const_value ;

always @ (posedge i_clk)
i f (! f_past_valid)

f_const_value <= tx_memory [f_const_addr] ;
e l s e

as se r t (f_const_value
== tx_memory [f_const_addr]) ;

This value is constant because we are implementing a ROM

Now we can assert any properties associated with this address

Formal Verification

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Ź

Formal
Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

48 / 56

This design need only assert one memory property

(∗ anyconst ∗) reg [1 0 : 0] f_const_addr ;
reg [7 : 0] f_const_value ;

˝ When we transmit a value from f_const_addr,
˝ assert that it is the right value

always @ (posedge i_clk)
i f ((tx_stb)&&(!tx_busy)

&&(tx_index == f_const_addr))
as se r t (tx_data == f_const_value) ;

We’ll come back to this memory verification approach again
when we discuss FIFOs

Formal Verification

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Ź

Formal
Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

49 / 56

What other properties might we assert?

˝ That our index remains within bounds?
˝ That any time our index is within the memory bounds,

tx_stb is high?

You should be familiar with these

˝ Let’s pause to look at the reset
˝ Cover might need some attention as well

Reset Assertions

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Ź Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

50 / 56

Synchronous reset properties have a basic pattern

˝ You may (or may not) assume an initial reset

always @ (∗)
i f (! f_past_valid)

assume (i_reset) ;

Reset Assertions

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Ź Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

51 / 56

Synchronous reset properties have a basic pattern

˝ You may (or may not) assume an initial reset
˝ The initial value, held when !f_past_valid, and

The value following a reset, i.e. when $past(i_reset)

Should both be identical

// Check f o r any th i ng wi th an i n i t i a l
// or a r e s e t v a l u e he r e
always @ (posedge i_clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

as se r t (hz_counter == 28 ’ h16) ;
as se r t (tx_index == 0) ;
as se r t (tx_stb == 0) ;

end

˝ This verifies we met the rules of a synchronous reset

Cover

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Ź Cover

Exercise!

Hardware Bonus

Conclusion

52 / 56

Unlike our Hello World design

˝ We can’t cover the entire message

– It’s just too long

˝ We can only cover the first several steps
˝ Let’s cover the first 30 characters

always @ (posedge i_clk)
cover (tx_index == 30) ;

We’ll need to simulate the rest

Simulation

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Ź Cover

Exercise!

Hardware Bonus

Conclusion

53 / 56

Our simulation script is nearly identical to Hello World

// ...

#inc l ude "Vmemtx.h"

// ...

i n t main(i n t argc , char ** argv) {

// ...

TESTB<Vmemtx> * tb = new TESTB<Vmemtx>;

//

tb -> opentrace ("memtx.vcd");

f o r (uns igned c l o ck s =0;

c l o ck s < 16*2000* baudc locks ;

c l o ck s ++) {

tb -> t i c k ();

(* uar t)(tb ->m core -> o ua r t t x);

} // ...

}

Exercise!

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Ź Exercise!

Hardware Bonus

Conclusion

54 / 56

As with all of our designs, let’s:

˝ Formally Verify this design
˝ Make sure it works in simulation

Hardware Bonus

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Ź Hardware Bonus

Conclusion

55 / 56

If you have hardware to work with,

˝ Build this design for your hardware!

– Be sure to compare the resource usage to Hello World

˝ Examine the serial port output

– Does your terminal require carriage returns?

˝ How hard would it be to change the message?

– Pick another message to send

Ź Perhaps the Sermon on the Mount from Matthew 5-7?

– What changes would need to be made to your design to
support a longer message?

– What’s the longest message your hardware will support?

Ź Would Psalm 119 fit?

https://www.blueletterbible.org/kjv/mat/5
https://www.blueletterbible.org/kjv/psa/119

Conclusion

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Ź Conclusion

56 / 56

What did we learn this lesson?

˝ The Rules of using Block RAM
˝ How to generate a hex file for initializing memory
˝ Two forms of synchronous reset logic
˝ How to formally verify . . .

– A component that uses RAM
– A synchronous reset

Now we just need to build a serial port receiver

Conclusion

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Ź Conclusion

56 / 56

What did we learn this lesson?

˝ The Rules of using Block RAM
˝ How to generate a hex file for initializing memory
˝ Two forms of synchronous reset logic
˝ How to formally verify . . .

– A component that uses RAM
– A synchronous reset

Now we just need to build a serial port receiver

˝ That’s next!

	
	Lesson Overview
	Design Goal
	On-Chip Memory
	Block RAM Rules
	Initializing Memory
	Reset
	Overview
	Restarting
	Mem Address
	Serial Port
	Next Steps
	Formal Verification
	Reset Assertions
	Cover
	Exercise!
	Hardware Bonus
	Conclusion

