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Three types of FPGA memory

˝ Flip-flops
˝ Distributed RAM
˝ Block RAM

Block RAM is special within an FPGA

˝ It is fast and abundant
˝ Requires one clock to access
˝ Can only be initialized at startup
˝ Yet there are some logic requirements to use it

Objectives

˝ Be able to create block RAM resources
˝ Understand the requirements of block RAMs
˝ Learn how to verify a component containing a block RAM
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Let’s also take a quick look at synchronous resets

˝ Learn the two types of resets
˝ Reset logic follows one of two forms

Extra Objectives

˝ Know the two forms of synchronous reset logic
˝ Know how to verify a design with a synchronous reset
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Let’s rebuild our Hello World design, but make the message
longer

˝ We’ll use a memory to capture our longer message

˝ Then read from this memory, and . . .
˝ Transmit it out the serial port
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Here’s a basic block diagram

˝ We’ll re-use the serial port transmitter, txuart.v
˝ We’ll capture our message in a block RAM, and . . .
˝ We’ll use a top level module to coordinate it all, memtx.v

– We’ll infer the block RAM within our memtx.v design

But what is on-chip RAM and how shall we declare and use it?
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There’s a special type of declaration for memory in Verilog:

reg [ W´1:0] ram [ 0 : MEMLN ´1] ;

˝ This defines a memory of MEMLN elements,

where each element is W bits long

˝ Verilog allows MEMLN to be anything
˝ Practically, MEMLN must only ever be a power of two, 2N , in

order to avoid simulation/hardware mismatch
˝ I tend to define my memories as

reg [ W´1:0] ram [0:(1<<LGMEMSZ ) ´1] ;

– This forces the power of two requirement
– LGMEMSZ can also be used as the width of the address
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There’s a special type of declaration for memory in Verilog:

reg [ W´1:0] ram [0:(1<<LGMEMSZ ) ´1] ;

The synthesis tool will decide how to implement this

˝ Flip-Flops

– Useful for small numbers of bits
– Very inefficient for implementing memory on an FPGA

˝ Distributed RAM

– Useful for small, localized RAM needs
– Typically allocated one-bit at a time for memory sizes of

2
6 elements (Ex. Xilinx’s SLICEM)

˝ Block RAM

– Useful for larger and wider RAM needs
– Using block RAM requires that you follow special rules



Block RAM Rules

Lesson Overview

Design Goal

On-chip RAM

Ź

Block RAM
Rules

Initializing Memory

Hex file

Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

8 / 56

If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block

always @ ( posedge i_clk )
i f ( write )

ram [ write_addr ] <= write_value ;

always @ ( posedge i_clk )
i f ( read )

read_value <= ram [ read_addr ] ;
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once

always @ ( posedge i_clk )
i f ( i_reset )
begin

// Thi s i s i l l e g a l ! B lock
// RAM cannot be re´ i n i t i a l i z e d
f o r (i=0; i<ramsize ; i=i+1)

ram [ i ] <= 0 ;
end e l s e i f ( i_stb )

ram [ addr ] <= value ;

This is often an unexpected frustration for beginners.

˝ The solution is to rewrite your algorithm so you don’t need to
do this
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if

always @ ( posedge i_clk )
i f (A )

value <= // someth ing ;
e l s e i f (B )

value <= // someth ing e l s e ;
e l s e i f (C )

// Don ’ t do t h i s e i t h e r !
value <= ram [ addr ] ;

e l s e i f (D )
// l o g i c c o n t i n u e s . . .

Such logic often ends up being replaced by flip-flops
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list

// Don ’ t do t h i s
output reg [ W´1:0] ram [0:(1<<LGMEMSZ ) ´1] ;
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

// Many s y n t h e s i z e r s w i l l t u rn t h i s i n t o FFs
always @ ( posedge i_clk )
i f ( write_enable )
begin

B <= // some l o g i c ;
C <= // someth ing e l s e ;
ram [ addr ] <= value ;

end
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

Some synthesizers/hardware allow byte enables

always @ ( posedge i_clk )
i f ( write_enable )
begin

i f (en [ 1 ] )
ram [ addr ] [ 1 5 : 8 ] <= value [ 1 5 : 8 ] ;

i f (en [ 0 ] )
ram [ addr ] [ 7 : 0 ] <= value [ 7 : 0 ] ;

end
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

Some synthesizers/hardware allow write-through

˝ Where the value being written may be read on the same clock

always @ ( posedge i_clk )
begin

i f ( write_enable )
mem [ addr ] = wvalue ;

rvalue = mem [ addr ] ;
end // Note the non´b l o c k i n g no t a t i o n !
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

Some synthesizers/hardware allow write-through

˝ Where the value being written may be read on the same clock

– This would be ideal for a CPU register file

˝ It’s not uniformly supported across our chosen tools/vendors
˝ Know your hardware, synthesizer, and simulator
˝ We’ll pretend this feature does not exist in this tutorial
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

If you fail to follow these rules,

You might get something other than block RAM, or
You’re design might fail to synthesize entirely

This is a common reason for synthesis failure
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If you want a block RAM, you need to follow certain rules:

1. Any RAM access should be contained in its own always block
2. RAM can only be initialized once
3. Don’t put a RAM access in a cascaded if
4. Don’t put a RAM in a port list
5. Don’t put a RAM in a block with other things

If you fail to follow these rules,

You might get something other than block RAM, or
You’re design might fail to synthesize entirely

This is a common reason for synthesis failure

˝ Always keep an eye on your RAM and LUT usages
˝ Something out of bounds may be caused by this

If you suspect this is a problem, break your design into smaller
and smaller components until you find out what’s going on
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When is distributed RAM used?

˝ If the memory size is small (32 elements or less)
˝ If the memory is read without a clock

always @ (∗ )
rvalue = mem [ addr ] ;

// Or e q u i v a l e n t l y
ass ign rvalue = mem [ addr ] ;

˝ Obviously, only if the device has distributed RAM

– iCE40 devices have no distributed RAM
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How might we initialize our RAM?

˝ We could use assignments within an initial block

reg [ 3 1 : 0 ] ram [ 0 : 8 1 9 1 ] ;

i n teger k ;
i n i t i a l begin

fo r (k=0; k <8192; k=k+1)
ram [ k ] = 0 ;

// We can a l s o s e t s p e c i f i c v a l u e s
ram [ 5 ] = 7 ;
ram [ 8 1 90 ] = 5 ;
// e t c .

end

˝ When using Xilinx’s ISE, this is the only way I’ve managed to
initialize RAM
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How might we initialize our RAM?

˝ We could use assignments within an initial block

– Verilator (currently) complains about non-blocking initial

assignments

// Thi s w i l l g e n e r a t e a V e r i l a t o r warn ing
i n i t i a l ram [ 8 1 90 ] <= 5 ;

– Yosys (currently) complains about blocking initial

assignments

// Thi s w i l l g e n e r a t e a Yosys warn ing
i n i t i a l ram [ 8 1 90 ] = 5 ;

If you don’t redefine any values, both will still work

˝ In this case, you may ignore the warnings
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How might we initialize our RAM?

˝ We could use a $readmemh function call (recommended)

reg [ 3 1 : 0 ] ram [ 0 : 8 1 9 1 ] ;
i n i t i a l $readmemh ( FILE_NAME , ram ) ;

˝ Each word of the file FILE_NAME has format %0*x

012345678
. . . .

˝ Separate each RAM word by white space
˝ Number of digits is based upon the width of the RAM word

– Our example above shows a 32-bit word

˝ Xilinx’s ISE has a known bug that prevents $readmemh from
working. Vivado doesn’t have this bug.
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How might we initialize our RAM?

˝ We could use a $readmemh function call (recommended)

reg [ 3 1 : 0 ] ram [ 0 : 8 1 9 1 ] ;
i n i t i a l $readmemh ( FILE_NAME , ram ) ;

˝ Alternatively, lines can begin with @(hexadecimal) addresses

@000000e0 2c 20 61 20 6e 65 77 20 6e 61 74 . . .
@000000f0 63 6f 6e 63 65 69 76 65 64 20 69 . . .
. . . .

– This example shows a series of 8-bit characters
– Sixteen per line

˝ This form makes it possible to skip elements
˝ We’ll build one of these files for our project later
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How might we initialize our RAM?

˝ We could use a $readmemh function call (recommended)

reg [ 3 1 : 0 ] ram [ 0 : 8 1 9 1 ] ;
i n i t i a l $readmemh ( FILE_NAME , ram ) ;

˝ On-chip RAM can only be initialized in an initial block
˝ Cannot re-initialize a block RAM in this fashion later without

reconfiguring (i.e. reloading) the FPGA
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Let’s generate a hex file that we can use with $readmemh

˝ Use a C++ program
˝ We’ll call this program genhex

˝ Much of the program is boilerplate and error checking
˝ We’ll skip most of this boilerplate now, and instead

focus on the interesting parts

You can find the entire genhex program with the course materials
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Let’s build our hex file

˝ We’ll prefix each line with an address

i n t l i n e l e n = 0;

i n t ch , addr = 0;

f p r i n t f ( fout , "@%08x ", addr );

l i n e l e n = 10;

˝ Don’t forget that the address begins with an @ sign
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Let’s build our hex file

˝ We’ll prefix each line with an address
˝ Process one character at a time

// Read one character from our file

wh i l e ((ch = f g e t c ( fp ))!=EOF) {

// and process it if we read

// a non -empty character

// ...

}
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Let’s build our hex file

˝ We’ll prefix each line with an address
˝ Process one character at a time
˝ The values out are simply hex characters

// ...

wh i l e ((ch = f g e t c ( fp ))!=EOF) {

f p r i n t f ( fout , "%0*x ",

( nb i t s +3)/4, ch & 0 x 0 f f );

l i n e l e n += 3;

addr ++;

// ...

˝ We can use nbits to make the width generic
˝ In this example, nbits = 8 so we only need two hex digits

each
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Let’s build our hex file

˝ We’ll prefix each line with an address
˝ Process one character at a time
˝ The values are just simply hex characters
˝ After 56 bytes, start a new line with a new address

wh i l e ((ch = f g e t c ( fp ))!=EOF) {

// ...

i f ( l i n e l e n >= 56) {

// New line starting with

// the current address

f p r i n t f ( fout , "\n@%08x ", addr );

l i n e l e n += 10;

}

} f p r i n t f ( fout , "\n");
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One task remains: adding the hexfile generation to our Makefile

˝ Our target is “memfile.hex”
˝ It depends upon genhex, and our text file, psalm.txt

memfi le.hex: genhex psalm. t x t

./genhex psalm. t x t

˝ genhex must also be built

– It depends upon genhex.cpp

genhex: genhex.cpp

g++ genhex.cpp -o genhex

˝ Don’t forget to make sure memfile.hex is built before it’s
needed

Voila! A hex file that will change anytime psalm.txt does
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After all that work,

˝ We can now declare and initialize our memory

reg [ 7 : 0 ] tx_memory [ 0 : 2 0 4 7 ] ;

i n i t i a l $readmemh ( ”memf i l e . hex ” , tx_memory ) ;

Next, we’ll need to discuss resets
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There are two types of resets

˝ Asynchronous resets

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk or negedge i_areset )
i f ( i_areset )

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are more complex than their synchronous counterparts
˝ Often require being asserted for many cycles, and
˝ Released on a clock edge
˝ Poor design can lead to radio interference triggering an

internal asynchronous reset



Reset

Lesson Overview

Design Goal

On-chip RAM

Block RAM Rules

Initializing Memory

Hex file

Ź Reset

Overview

Restarting

Mem Address

Serial Port

Next Steps

Formal Verification

Reset Assertions

Cover

Exercise!

Hardware Bonus

Conclusion

30 / 56

There are two types of resets

˝ Asynchronous resets

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk or negedge i_areset )
i f ( i_areset )

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are more complex than their synchronous counterparts
˝ Often require being asserted for many cycles, and
˝ Released on a clock edge
˝ Poor design can lead to radio interference triggering an

internal asynchronous reset

– This is bad.
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There are two types of resets

˝ Asynchronous resets

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk or negedge i_areset )
i f ( i_areset )

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are more complex than their synchronous counterparts
˝ Often require being asserted for many cycles, and
˝ Released on a clock edge
˝ Poor design can lead to radio interference triggering an

internal asynchronous reset

– This is bad. We will avoid these in this tutorial
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There are two types of resets

˝ Asynchronous resets, and
˝ Synchronous resets

– These are set and released on clock tick

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ These are simple to build and use

Let’s implement a synchronous reset to this design
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Many designs use a synchronous reset

˝ Values responsive to a reset should also have an initial value
˝ The initial value and the reset value must match

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

tx_index <= 0 ;
e l s e begin

// The r e s t o f your l o g i c
end

˝ I like this form of a reset, but
˝ It requires that every register set by this block gets reset as

well

The original Hello World design included no reset
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Many designs use a synchronous reset

˝ Values responsive to a reset should also have an initial value
˝ An alternate form of reset needs to be used if some values

need to be reset within the block and others don’t

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk )
begin

// Your l o g i c would come
// f i r s t , then . . .

i f ( i_reset )
// Ov e r r i d e s the l o g i c above
tx_index <= 0 ;

end

˝ This is a more generic form, useful for all purposes
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Why might you need a synchronous reset?

˝ Sometimes internal or external conditions will require a reset

– Ex: An embedded CPU crash, or watchdog timer timeout
might cause a CPU to need to be reset

˝ Not all technologies support initial values

– For example, if you want to create FPGA+ASIC support,
you design will need a reset

˝ Sometimes it just helps to start over
˝ A (debounced) button can be used to create a reset

Let’s use a synchronous reset in our design
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Here’s how our design is going to work
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Here’s how our design is going to work

˝ We’ll send our message once per second
˝ A counter, hz_counter, will count each second
˝ When hz_counter reaches zero, tx_restart will signal the

rest of the design to restart

This much should be fairly familiar
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Here’s how our design is going to work

˝ tx_index will capture our position in the message stream
˝ We’ll read tx_data from memory, to know what to transmit
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Here’s how our design is going to work

˝ tx_stb will request a byte to be transmitted
˝ Once the whole message has been transmitted,
˝ tx_stb will deactivate until the next tx_restart

Are you ready to examine some Verilog?
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Here’s the one-second counter, hz_counter

// We’ l l s t a r t our coun t e r j u s t b e f o r e the
// top o f the second , to g i v e e v e r y t h i n g
// a chance to i n i t i a l i z e
i n i t i a l hz_counter = 28 ’ h16 ;
always @ ( posedge i_clk )
i f ( i_reset )

hz_counter <= 28 ’ h16 ;
e l s e i f ( hz_counter == 0)

hz_counter <= CLOCK_RATE_HZ ´ 1 ’b1 ;
e l s e

hz_counter <= hz_counter ´ 1 ’b1 ;
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Here’s the one-second counter, hz_counter

// We’ l l s t a r t our coun t e r j u s t b e f o r e the
// top o f the second , to g i v e e v e r y t h i n g
// a chance to i n i t i a l i z e
i n i t i a l hz_counter = 28 ’ h16 ;
always @ ( posedge i_clk )
i f ( i_reset )

hz_counter <= 28 ’ h16 ;
e l s e i f ( hz_counter == 0)

hz_counter <= CLOCK_RATE_HZ ´ 1 ’b1 ;
e l s e

hz_counter <= hz_counter ´ 1 ’b1 ;

˝ Question: What assertion(s) does this logic require?
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Once a second, we’ll set tx_restart

i n i t i a l tx_restart = 0 ;
always @ ( posedge i_clk )

tx_restart <= ( hz_counter == 1 ) ;

Do you see a formal property hiding in here?

always @ (∗ )
as se r t ( tx_restart == ( hz_counter == 0 ) ) ;

Practice writing assertions as you see relationships!
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We’ll need an address to read from memory

// Number o f b y t e s i n our message
parameter MSGLEN = 1600 ;

i n i t i a l tx_index = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

tx_index <= 0 ;
e l s e i f ( ( tx_stb )&&(!tx_busy ) )
begin // Advance anyt ime a c h a r a c t e r was

// accep ted by the s e r i a l port ,
i f ( tx_index == MSGLEN´1)

// End o f message
tx_index <= 0 ;

e l s e

tx_index <= tx_index + 1 ’b1 ;
end
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Memory reads take one clock

always @ ( posedge i_clk )
tx_data <= tx_memory [ tx_index ] ;

Remember our rules from earlier?

˝ We might have also chosen to use a read enable
˝ It wasn’t necessary for this design though
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As with Hello World, tx_stb indicates we have a character to
transmit

i n i t i a l tx_stb = 1 ’b0 ;
always @ ( posedge i_clk )
i f ( i_reset )

tx_stb <= 1 ’b0 ;
e l s e i f ( tx_restart )

// S t a r t t r a n sm i t t i n g anyt ime
// t x r e s t a r t i s t r u e
tx_stb <= 1 ’b1 ;

e l s e i f ( ( tx_stb )&&(!tx_busy )
&&(tx_index >= MSGLEN´1))

// Stop when we get to the end
// o f the message
tx_stb <= 1 ’b0 ;
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We’ll skip the serial port details here

˝ We built this earlier
˝ We also showed how to abstract the serial port earlier
˝ Even our simulation script is nearly identical to Hello World

Feel free to go back and review if you don’t remember these
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That’s the basics of our design!

˝ We’ve already built our hex file, so
˝ We can now move on to formal verification!
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Formally verifying a component using memory requires:

˝ Assuming a constant address
˝ Asserting properties for the value at that address
˝ Usually requires examining no more than a single address

We can assume a constant value using the (∗ anyconst ∗)

attribute

(∗ anyconst ∗) reg [ 1 0 : 0 ] f_const_addr ;

˝ This allows the solver to pick any value for f_const_addr
˝ As long as it is constant
˝ If even one value can make your design fail,

the solver will find it

Let’s see how this works
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Let’s create a value to match our memory at

(∗ anyconst ∗) reg [ 1 0 : 0 ] f_const_addr ;

˝ We’ll call this f_const_value

reg [ 7 : 0 ] f_const_value ;

always @ ( posedge i_clk )
i f ( ! f_past_valid )

f_const_value <= tx_memory [ f_const_addr ] ;
e l s e

as se r t ( f_const_value
== tx_memory [ f_const_addr ] ) ;

This value is constant because we are implementing a ROM

Now we can assert any properties associated with this address
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This design need only assert one memory property

(∗ anyconst ∗) reg [ 1 0 : 0 ] f_const_addr ;
reg [ 7 : 0 ] f_const_value ;

˝ When we transmit a value from f_const_addr,
˝ assert that it is the right value

always @ ( posedge i_clk )
i f ( ( tx_stb )&&(!tx_busy )

&&(tx_index == f_const_addr ) )
as se r t ( tx_data == f_const_value ) ;

We’ll come back to this memory verification approach again
when we discuss FIFOs
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What other properties might we assert?

˝ That our index remains within bounds?
˝ That any time our index is within the memory bounds,

tx_stb is high?

You should be familiar with these

˝ Let’s pause to look at the reset
˝ Cover might need some attention as well
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Synchronous reset properties have a basic pattern

˝ You may (or may not) assume an initial reset

always @ (∗ )
i f ( ! f_past_valid )

assume ( i_reset ) ;
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Synchronous reset properties have a basic pattern

˝ You may (or may not) assume an initial reset
˝ The initial value, held when !f_past_valid, and

The value following a reset, i.e. when $past(i_reset)

Should both be identical

// Check f o r any th i ng wi th an i n i t i a l
// or a r e s e t v a l u e he r e
always @ ( posedge i_clk )
i f ( ( ! f_past_valid ) | | ( $past ( i_reset ) ) )
begin

as se r t ( hz_counter == 28 ’ h16 ) ;
as se r t ( tx_index == 0 ) ;
as se r t ( tx_stb == 0 ) ;

end

˝ This verifies we met the rules of a synchronous reset
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Unlike our Hello World design

˝ We can’t cover the entire message

– It’s just too long

˝ We can only cover the first several steps
˝ Let’s cover the first 30 characters

always @ ( posedge i_clk )
cover ( tx_index == 30 ) ;

We’ll need to simulate the rest
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Our simulation script is nearly identical to Hello World

// ...

#inc l ude "Vmemtx.h"

// ...

i n t main( i n t argc , char ** argv ) {

// ...

TESTB<Vmemtx> * tb = new TESTB<Vmemtx>;

//

tb -> opentrace ("memtx.vcd");

f o r ( uns igned c l o ck s =0;

c l o ck s < 16*2000* baudc locks ;

c l o ck s ++) {

tb -> t i c k ();

(* uar t )( tb ->m core -> o ua r t t x );

} // ...

}
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As with all of our designs, let’s:

˝ Formally Verify this design
˝ Make sure it works in simulation
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If you have hardware to work with,

˝ Build this design for your hardware!

– Be sure to compare the resource usage to Hello World

˝ Examine the serial port output

– Does your terminal require carriage returns?

˝ How hard would it be to change the message?

– Pick another message to send

Ź Perhaps the Sermon on the Mount from Matthew 5-7?

– What changes would need to be made to your design to
support a longer message?

– What’s the longest message your hardware will support?

Ź Would Psalm 119 fit?

https://www.blueletterbible.org/kjv/mat/5
https://www.blueletterbible.org/kjv/psa/119
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What did we learn this lesson?

˝ The Rules of using Block RAM
˝ How to generate a hex file for initializing memory
˝ Two forms of synchronous reset logic
˝ How to formally verify . . .

– A component that uses RAM
– A synchronous reset

Now we just need to build a serial port receiver
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What did we learn this lesson?

˝ The Rules of using Block RAM
˝ How to generate a hex file for initializing memory
˝ Two forms of synchronous reset logic
˝ How to formally verify . . .

– A component that uses RAM
– A synchronous reset

Now we just need to build a serial port receiver

˝ That’s next!
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