
Gisselquist
Technology, LLC

7. Data Coherency

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

2 / 46

Understanding why the button counter didn’t work as expected

˝ It double counted button presses
˝ Sometimes it counted 2-4 times per button press
˝ Rarer observed effects

– At one point, the counter counted down
– Another time, it skipped 11 numbers at once

Objectives

˝ Understand data coherency issues
˝ Understanding bouncing
˝ Build and verify a button debouncer

Last Lesson

Lesson Overview

Ź Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

3 / 46

This lesson picks up where the last lesson left off.

˝ If you didn’t build the button counter, or implement it in
hardware

– You missed a valuable lesson
– Go back and try it
– Press the button several times, see what happens

˝ If it didn’t work like you expected it should

– Feel free to start this lesson

Button Press Counter

Lesson Overview

Last Lesson

Ź Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

4 / 46

We built a button press counter in the last lesson

1. It detected a button press,
2. Incremented a counter,
3. Sent the value over the serial port as

hexadecimal, and was
4. Witnessed at a terminal

An easy way to count button presses, no?

Was this what you expected?

Lesson Overview

Last Lesson

Review

Ź

What
happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

5 / 46

This looks like it could be fixed

Was this what you expected?

Lesson Overview

Last Lesson

Review

Ź

What
happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

6 / 46

This might take some work to understand

Was this what you expected?

Lesson Overview

Last Lesson

Review

Ź

What
happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

7 / 46

Now I’m really confused! What happened?

Logic takes time

Lesson Overview

Last Lesson

Review

What happened?

Ź Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

8 / 46

To understand what happened, you need to understand that . . .

˝ Logic takes time
˝ It takes time to go through a logic gate
˝ It takes time to move about the chip

All this work must be done in time for the next clock

Setup and Hold

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Ź Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

9 / 46

Flip-Flops (FFs) (a.k.a. registers or regs) have two requirements

1. The incoming data must be constant for a setup period of
time before the clock edge

2. It must also be constant for a hold time after the clock edge

If these criteria are not met, your design will not function as you
expect

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

Caving Analogy

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Ź Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

10 / 46

I like to explain clocks using caves as an analogy

It starts with the clock, and the FFs set using that clock

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

Caving Analogy

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Ź Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

11 / 46

I like to explain clocks using caves as an analogy

Adding logic creates stalagtites

˝ Stalagtites in this analogy are formed from assign statements
and always @(∗) blocks

– Their timing is derived from the last clock tick

Caving Analogy

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Ź Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

12 / 46

I like to explain clocks using caves as an analogy

Adding logic creates stalagtites and stalagmites

˝ Stalagtites in this analogy are formed from assign statements
and always @(∗) blocks

˝ Stalagmites are formed from always @(posedge i_clk) blocks

– Their timing is derived from the next clock tick

Caving Analogy

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Ź Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

13 / 46

I like to explain clocks using caves as an analogy

Your goal as the designer is to make certain that there’s extra
space between stalagtites and the stalagmites

˝ This is your margin
˝ You need this margin for success

Did we guarantee any margin in our button press design?

What happened

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Ź Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

14 / 46

For reference, here was the basic problematic code:

i n i t i a l o_count = 0 ;
always @ (posedge i_clk)
i f (i_reset)

o_count <= 0 ;
e l s e i f ((i_btn)&&(!last_btn))

o_count <= o_count + 1 ’b1 ;

See the problem?

No margin

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

Ź No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

15 / 46

In our last design, . . .

˝ Timing analysis was based upon the time between FFs
˝ The 32-bit carry chain stretched out the logic
˝ The high clock rate I used just made this worse

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

No margin

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

Ź No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

16 / 46

In our last design, . . .

We did nothing to guarantee the button press plus our logic
would fit between two clock ticks with margin left over

More margin

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

Ź No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

17 / 46

Eliminating almost all of the logic is better

˝ But still not good enough
˝ The button input must go directly into an FF

https://en.wikipedia.org/wiki/Flip-flop_(electronics)

Asynchronous Input

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Ź

Asynchronous
Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

18 / 46

If we can’t control when the button rises, . . .

How can we ensure the setup and hold times are met?

Asynchronous Input

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Ź

Asynchronous
Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

18 / 46

If we can’t control when the button rises, . . .

How can we ensure the setup and hold times are met?

˝ We can’t

Asynchronous Input

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Ź

Asynchronous
Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

19 / 46

Rule: All asynchronous inputs must go through a
2FF synchronizer

˝ Inputs must first go directly into a FF

– No other logic is allowed
– The output of this FF may not (yet) be stable

Metastability is the name for when a logic value is neither
zero or one. It is a rare result of not meeting setup and
hold requirements

http://zipcpu.com/blog/2017/10/20/cdc.html
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Metastability_(electronics)

Asynchronous Input

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Ź

Asynchronous
Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

20 / 46

Rule: All asynchronous inputs must go through a
2FF synchronizer

˝ Inputs must first go directly into a FF
˝ To deal with the broken setup and hold times, we go directly

into a second flip-flop

– This reduces the likelihood of metastability

http://zipcpu.com/blog/2017/10/20/cdc.html
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Metastability_(electronics)

Asynchronous Input

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Ź

Asynchronous
Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

21 / 46

Rule: All asynchronous inputs must go through a
2FF synchronizer

Does this apply to other asynchronous inputs besides buttons?

˝ Yes! If it is not synchronized to your clock, it must go
through a two flip-flop synchronizer

˝ Won’t this slow signals down? Yes, it will.

– This is why it is important to provide a clock together
with any data signal(s) in low-latency applications

http://zipcpu.com/blog/2017/10/20/cdc.html
http://zipcpu.com/blog/2017/10/20/cdc.html

2FF Synchronizer

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

Ź 2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

22 / 46

This is a 2 Flip-Flop (2FF) synchronizer

Synchronizing our button input would look like

reg r_btn , r_aux ;

i n i t i a l { r_btn , r_aux } = 2 ’ b00 ;
always @ (posedge i_clk)

{ r_btn , r_aux } <= { r_aux , i_btn } ;

http://zipcpu.com/blog/2017/10/20/cdc.html

Bouncing

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Ź Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

23 / 46

This will fix everything but the double-counts

˝ Often, pressing a button caused the counter to count twice
˝ The counter wouldn’t skip, but one button press generated

two counts

This is due to button bouncing

Bouncing

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Ź Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

24 / 46

A trace from within our design might look like this

Look at the trace for i_btn[4]

˝ Notice how the button toggles, or “bounces” before it settles
˝ This is common
˝ It is caused by

– Increased capacitance as the contacts come closer
– A voltage slowly crossing through the threshold region

http://zipcpu.com/blog/2017/08/02/debounce-teaser.html

Bouncing

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Ź Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

25 / 46

A trace from within our design might look like this

We’ll need to simplify this “bouncing” trace

˝ This is called debouncing
˝ Our goal will be to produce a trace like debounced[4] above

http://zipcpu.com/blog/2017/08/02/debounce-teaser.html
http://zipcpu.com/blog/2017/08/04/debouncing.html

Debouncing

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Ź Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

26 / 46

Our goal:

i_clk

r_btn

debounced

˝ Create an output that changes when the button changes
˝ Not when the button bounces

Debouncing

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Ź Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

27 / 46

Our goal:

i_clk

r_btn

debounced

This applies both to the button press as well as to its release

Debouncing

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Ź Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

27 / 46

Our goal:

i_clk

r_btn

debounced

This applies both to the button press as well as to its release
A state diagram might make more sense of what we need to do

Debouncing FSM

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

Ź FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

28 / 46

Debouncing requires a timer

We’ll respond to the button any time the timer is idle

˝ This should be starting to look familiar

Timer

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Ź Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

29 / 46

A button debouncer has three basic parts

1. The 2FF synchronizer

i n i t i a l { r_btn , r_aux } = 0 ;
always @ (posedge i_clk)

{ r_btn , r_aux } <= { r_aux , i_btn } ;

http://zipcpu.com/blog/2017/08/04/debouncing.html
http://zipcpu.com/blog/2017/10/20/cdc.html

Timer

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Ź Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

30 / 46

A button debouncer has three basic parts

1. The 2FF synchronizer
2. The count-down timer

i n i t i a l timer = 0 ;
always @ (posedge i_clk)
i f (timer != 0)

timer <= timer ´ 1 ;
e l s e i f (r_btn != o_debounced)

timer <= TIME_PERIOD´1;

http://zipcpu.com/blog/2017/10/20/cdc.html

Timer

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Ź Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

31 / 46

A button debouncer has three basic parts

1. The 2FF synchronizer
2. The count-down timer
3. The output

always @ (posedge i_clk)
i f (timer == 0)

o_debounced <= r_btn ;

This looks simple enough. Now, how to verify it?

http://zipcpu.com/blog/2017/10/20/cdc.html

Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Ź Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

32 / 46

The problem is that our simulated button never bounced

˝ If we can simulate a button bouncing, we’ll can gain some
confidence that our debouncer will work

˝ Perhaps if we toggled the button input randomly for some
period of time, both

– Following a button press, and
– Following the button’s release

˝ The simulated button would then stop toggling

– Remaining in its pressed or released state

Making sure our simulation matches our hardware is an
important and critical part of design!

Co-Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

33 / 46

A button co-simulator should . . .

˝ Be able to be pressed

c l a s s BUTTONSIM {

// ...

vo id p r e s s (vo id);

˝ Be able to be released

vo id r e l e a s e (vo id);

˝ Bounce following any press or release

i n t ope rato r ()(vo id);

}

Let’s build out these methods

Co-Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

34 / 46

Our button class will have two state variables and a constant

#de f i n e TIME_PERIOD 50000 // 1/2 ms at 10ns

c l a s s BUTTONSIM {

i n t m state , m timeout;

pub l i c :

BUTTONSIM(vo id) {

// Start with the button up

m state = 0; // Not pressed

//

// And begin stable , i.e.

m timeout =0;

} // ...

˝ m_state is the current state of the button
˝ m_timeout is a count-down timer. When it reaches zero, our

button’s value will be stable

Sim Press

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

35 / 46

When a button is pressed, we’ll change the state and set a timer

c l a s s BUTTONSIM {

// ...

vo id p r e s s (vo id) {

m state = 1; // i.e. down

m timeout = TIME PERIOD;

}

The timer will tell us when to stop bouncing

Sim Release

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

36 / 46

Button release is nearly identical

c l a s s BUTTONSIM {

// ...

vo id r e l e a s e (vo id) {

m state = 0; // i.e. released

m timeout = TIME PERIOD;

}

Sim Release

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

37 / 46

We can also support a test to see if the button is pressed

c l a s s BUTTONSIM {

// ...

bool p res sed (vo id) {

r e tu rn m state ;

}

While this wasn’t part of our initial design outline,

˝ We are going to need this method below

Co-Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

38 / 46

Now, let’s make our button bounce

i n t BUTTONSIM:: operato r ()(vo id) {

i f (m timeout > 0) // Always count down

m timeout --;

i f (m timeout == TIME PERIOD-1) {

// Return any new button

// state accurately and

// immediately

r e tu rn m state ;

} e l s e i f (m timeout > 0) {

// Until we become stable

// Bounce!

r e tu rn rand ()&1;

}

// Else the button has settled

r e tu rn m state ;

}

Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

39 / 46

Adding this to our simulation requires

˝ Declaring our button

BUTTONSIM *btn;

Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

40 / 46

Adding this to our simulation requires

˝ Declaring our button, and allocating a button object

BUTTONSIM *btn;

// ...

btn = new BUTTONSIM();

Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

41 / 46

Adding this to our simulation requires

˝ Declaring our button, and allocating a button object
˝ Adjusting our button press scheme

do {

i n t chv;

chv = getch ();

i f (chv == ’r’)

btn -> r e l e a s e ();

e l s e i f ((chv != ERR)

&&(!btn -> pres sed ())) {

keypesses ++;

btn -> p re s s ();

}

// ...

} wh i l e (!done);

Simulation

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Ź Co-Simulation

Exercise

Formal Methods

Conclusion

42 / 46

Adding this to our simulation requires

˝ Declaring our button
˝ Adjusting our button press scheme
˝ Adding it to our list of co-sim calls

f o r (i n t k=0; k<1000; k++) {

// Advance the Verilator logic

tb -> t i c k ();

// Serial -port Co -sim

(* uar t)(tb ->m core -> o ua r t t x);

// Button co -sim

m core -> i b t n = (*btn)();

}

Exercise

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Ź Exercise

Formal Methods

Conclusion

43 / 46

Your turn!
Build and experiment with the simulation

˝ Create a trace showing the button bouncing
˝ Make your Verilog timeout longer than the C++

TIME_PERIOD.

Exercise

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Ź Exercise

Formal Methods

Conclusion

44 / 46

Now build this on your hardware. Does it work?

˝ Do you ever get multiple counts for a single press?
˝ Does the counter ever jump?

Formal Methods

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Ź Formal Methods

Conclusion

45 / 46

We haven’t discussed formal methods this lesson

˝ Our debouncing circuit can still be verified

– Although there’s not much there
– You should have an idea of how to do this from our last

lessons

˝ What formal properties might you include to verify this
design?

http://zipcpu.com/blog/2017/08/04/debouncing.html

Conclusion

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Ź Conclusion

46 / 46

What did we learn this lesson?

˝ Always send asynchronous inputs through a 2FF synchronizer
before using them

– Failing to do this can result in some inexplicable behavior
– Simulation and implementation might not match

Ź Bugs of this kind can be very hard to find and fix

˝ Buttons bounce!

– A basic debouncing circuit is another FSM
– This time with a counter within it

http://zipcpu.com/blog/2017/10/20/cdc.html
http://zipcpu.com/blog/2017/08/04/debouncing.html

	
	Lesson Overview
	Last Lesson
	Review
	Logic takes time
	Setup and Hold
	Caving Analogy
	No margin
	Asynchronous Input
	2FF Sync
	Bouncing
	Debouncing
	Debouncing FSM
	Timer
	Simulation
	Co-Simulation
	Exercise
	Formal Methods
	Conclusion

