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Understanding why the button counter didn’t work as expected

˝ It double counted button presses
˝ Sometimes it counted 2-4 times per button press
˝ Rarer observed effects

– At one point, the counter counted down
– Another time, it skipped 11 numbers at once

Objectives

˝ Understand data coherency issues
˝ Understanding bouncing
˝ Build and verify a button debouncer
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This lesson picks up where the last lesson left off.

˝ If you didn’t build the button counter, or implement it in
hardware

– You missed a valuable lesson
– Go back and try it
– Press the button several times, see what happens

˝ If it didn’t work like you expected it should

– Feel free to start this lesson



Button Press Counter

Lesson Overview

Last Lesson

Ź Review

What happened?

Logic takes time

Setup and Hold

Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

4 / 46

We built a button press counter in the last lesson

1. It detected a button press,
2. Incremented a counter,
3. Sent the value over the serial port as

hexadecimal, and was
4. Witnessed at a terminal

An easy way to count button presses, no?
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This looks like it could be fixed
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This might take some work to understand
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Now I’m really confused! What happened?
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To understand what happened, you need to understand that . . .

˝ Logic takes time
˝ It takes time to go through a logic gate
˝ It takes time to move about the chip

All this work must be done in time for the next clock
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Flip-Flops (FFs) (a.k.a. registers or regs) have two requirements

1. The incoming data must be constant for a setup period of
time before the clock edge

2. It must also be constant for a hold time after the clock edge

If these criteria are not met, your design will not function as you
expect

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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I like to explain clocks using caves as an analogy

It starts with the clock, and the FFs set using that clock

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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I like to explain clocks using caves as an analogy

Adding logic creates stalagtites

˝ Stalagtites in this analogy are formed from assign statements
and always @(∗) blocks

– Their timing is derived from the last clock tick
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I like to explain clocks using caves as an analogy

Adding logic creates stalagtites and stalagmites

˝ Stalagtites in this analogy are formed from assign statements
and always @(∗) blocks

˝ Stalagmites are formed from always @(posedge i_clk) blocks

– Their timing is derived from the next clock tick



Caving Analogy

Lesson Overview

Last Lesson

Review

What happened?

Logic takes time

Setup and Hold

Ź Caving Analogy

No margin

Asynchronous Input

2FF Sync

Bouncing

Debouncing

FSM

Timer

Simulation

Co-Simulation

Exercise

Formal Methods

Conclusion

13 / 46

I like to explain clocks using caves as an analogy

Your goal as the designer is to make certain that there’s extra
space between stalagtites and the stalagmites

˝ This is your margin
˝ You need this margin for success

Did we guarantee any margin in our button press design?
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For reference, here was the basic problematic code:

i n i t i a l o_count = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

o_count <= 0 ;
e l s e i f ( ( i_btn )&&(!last_btn ) )

o_count <= o_count + 1 ’b1 ;

See the problem?
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In our last design, . . .

˝ Timing analysis was based upon the time between FFs
˝ The 32-bit carry chain stretched out the logic
˝ The high clock rate I used just made this worse

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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In our last design, . . .

We did nothing to guarantee the button press plus our logic
would fit between two clock ticks with margin left over
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Eliminating almost all of the logic is better

˝ But still not good enough
˝ The button input must go directly into an FF

https://en.wikipedia.org/wiki/Flip-flop_(electronics)
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If we can’t control when the button rises, . . .

How can we ensure the setup and hold times are met?
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If we can’t control when the button rises, . . .

How can we ensure the setup and hold times are met?

˝ We can’t
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Rule: All asynchronous inputs must go through a
2FF synchronizer

˝ Inputs must first go directly into a FF

– No other logic is allowed
– The output of this FF may not (yet) be stable

Metastability is the name for when a logic value is neither
zero or one. It is a rare result of not meeting setup and
hold requirements

http://zipcpu.com/blog/2017/10/20/cdc.html
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Metastability_(electronics)
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Rule: All asynchronous inputs must go through a
2FF synchronizer

˝ Inputs must first go directly into a FF
˝ To deal with the broken setup and hold times, we go directly

into a second flip-flop

– This reduces the likelihood of metastability

http://zipcpu.com/blog/2017/10/20/cdc.html
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Metastability_(electronics)
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Rule: All asynchronous inputs must go through a
2FF synchronizer

Does this apply to other asynchronous inputs besides buttons?

˝ Yes! If it is not synchronized to your clock, it must go
through a two flip-flop synchronizer

˝ Won’t this slow signals down? Yes, it will.

– This is why it is important to provide a clock together
with any data signal(s) in low-latency applications

http://zipcpu.com/blog/2017/10/20/cdc.html
http://zipcpu.com/blog/2017/10/20/cdc.html
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This is a 2 Flip-Flop (2FF) synchronizer

Synchronizing our button input would look like

reg r_btn , r_aux ;

i n i t i a l { r_btn , r_aux } = 2 ’ b00 ;
always @ ( posedge i_clk )

{ r_btn , r_aux } <= { r_aux , i_btn } ;

http://zipcpu.com/blog/2017/10/20/cdc.html
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This will fix everything but the double-counts

˝ Often, pressing a button caused the counter to count twice
˝ The counter wouldn’t skip, but one button press generated

two counts

This is due to button bouncing
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A trace from within our design might look like this

Look at the trace for i_btn[4]

˝ Notice how the button toggles, or “bounces” before it settles
˝ This is common
˝ It is caused by

– Increased capacitance as the contacts come closer
– A voltage slowly crossing through the threshold region

http://zipcpu.com/blog/2017/08/02/debounce-teaser.html
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A trace from within our design might look like this

We’ll need to simplify this “bouncing” trace

˝ This is called debouncing
˝ Our goal will be to produce a trace like debounced[4] above

http://zipcpu.com/blog/2017/08/02/debounce-teaser.html
http://zipcpu.com/blog/2017/08/04/debouncing.html
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Our goal:

i_clk

r_btn

debounced

˝ Create an output that changes when the button changes
˝ Not when the button bounces
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Our goal:

i_clk

r_btn

debounced

This applies both to the button press as well as to its release
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Our goal:

i_clk

r_btn

debounced

This applies both to the button press as well as to its release
A state diagram might make more sense of what we need to do
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Debouncing requires a timer

We’ll respond to the button any time the timer is idle

˝ This should be starting to look familiar
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A button debouncer has three basic parts

1. The 2FF synchronizer

i n i t i a l { r_btn , r_aux } = 0 ;
always @ ( posedge i_clk )

{ r_btn , r_aux } <= { r_aux , i_btn } ;

http://zipcpu.com/blog/2017/08/04/debouncing.html
http://zipcpu.com/blog/2017/10/20/cdc.html
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A button debouncer has three basic parts

1. The 2FF synchronizer
2. The count-down timer

i n i t i a l timer = 0 ;
always @ ( posedge i_clk )
i f ( timer != 0)

timer <= timer ´ 1 ;
e l s e i f ( r_btn != o_debounced )

timer <= TIME_PERIOD´1;

http://zipcpu.com/blog/2017/10/20/cdc.html
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A button debouncer has three basic parts

1. The 2FF synchronizer
2. The count-down timer
3. The output

always @ ( posedge i_clk )
i f ( timer == 0)

o_debounced <= r_btn ;

This looks simple enough. Now, how to verify it?

http://zipcpu.com/blog/2017/10/20/cdc.html
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The problem is that our simulated button never bounced

˝ If we can simulate a button bouncing, we’ll can gain some
confidence that our debouncer will work

˝ Perhaps if we toggled the button input randomly for some
period of time, both

– Following a button press, and
– Following the button’s release

˝ The simulated button would then stop toggling

– Remaining in its pressed or released state

Making sure our simulation matches our hardware is an
important and critical part of design!
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A button co-simulator should . . .

˝ Be able to be pressed

c l a s s BUTTONSIM {

// ...

vo id p r e s s ( vo id );

˝ Be able to be released

vo id r e l e a s e ( vo id );

˝ Bounce following any press or release

i n t ope rato r ()( vo id );

}

Let’s build out these methods
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Our button class will have two state variables and a constant

#de f i n e TIME_PERIOD 50000 // 1/2 ms at 10ns

c l a s s BUTTONSIM {

i n t m state , m timeout;

pub l i c :

BUTTONSIM( vo id ) {

// Start with the button up

m state = 0; // Not pressed

//

// And begin stable , i.e.

m timeout =0;

} // ...

˝ m_state is the current state of the button
˝ m_timeout is a count-down timer. When it reaches zero, our

button’s value will be stable
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When a button is pressed, we’ll change the state and set a timer

c l a s s BUTTONSIM {

// ...

vo id p r e s s ( vo id ) {

m state = 1; // i.e. down

m timeout = TIME PERIOD;

}

The timer will tell us when to stop bouncing
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Button release is nearly identical

c l a s s BUTTONSIM {

// ...

vo id r e l e a s e ( vo id ) {

m state = 0; // i.e. released

m timeout = TIME PERIOD;

}
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We can also support a test to see if the button is pressed

c l a s s BUTTONSIM {

// ...

bool p res sed ( vo id ) {

r e tu rn m state ;

}

While this wasn’t part of our initial design outline,

˝ We are going to need this method below
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Now, let’s make our button bounce

i n t BUTTONSIM:: operato r ()( vo id ) {

i f (m timeout > 0) // Always count down

m timeout --;

i f (m timeout == TIME PERIOD-1) {

// Return any new button

// state accurately and

// immediately

r e tu rn m state ;

} e l s e i f (m timeout > 0) {

// Until we become stable

// Bounce!

r e tu rn rand ()&1;

}

// Else the button has settled

r e tu rn m state ;

}
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Adding this to our simulation requires

˝ Declaring our button

BUTTONSIM *btn;
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Adding this to our simulation requires

˝ Declaring our button, and allocating a button object

BUTTONSIM *btn;

// ...

btn = new BUTTONSIM();
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Adding this to our simulation requires

˝ Declaring our button, and allocating a button object
˝ Adjusting our button press scheme

do {

i n t chv;

chv = getch ();

i f (chv == ’r’)

btn -> r e l e a s e ();

e l s e i f (( chv != ERR)

&&(!btn -> pres sed ())) {

keypesses ++;

btn -> p re s s ();

}

// ...

} wh i l e (!done);
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Adding this to our simulation requires

˝ Declaring our button
˝ Adjusting our button press scheme
˝ Adding it to our list of co-sim calls

f o r ( i n t k=0; k<1000; k++) {

// Advance the Verilator logic

tb -> t i c k ();

// Serial -port Co -sim

(* uar t )( tb ->m core -> o ua r t t x );

// Button co -sim

m core -> i b t n = (*btn )();

}
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Your turn!
Build and experiment with the simulation

˝ Create a trace showing the button bouncing
˝ Make your Verilog timeout longer than the C++

TIME_PERIOD.
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Now build this on your hardware. Does it work?

˝ Do you ever get multiple counts for a single press?
˝ Does the counter ever jump?
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We haven’t discussed formal methods this lesson

˝ Our debouncing circuit can still be verified

– Although there’s not much there
– You should have an idea of how to do this from our last

lessons

˝ What formal properties might you include to verify this
design?

http://zipcpu.com/blog/2017/08/04/debouncing.html
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What did we learn this lesson?

˝ Always send asynchronous inputs through a 2FF synchronizer
before using them

– Failing to do this can result in some inexplicable behavior
– Simulation and implementation might not match

Ź Bugs of this kind can be very hard to find and fix

˝ Buttons bounce!

– A basic debouncing circuit is another FSM
– This time with a counter within it

http://zipcpu.com/blog/2017/10/20/cdc.html
http://zipcpu.com/blog/2017/08/04/debouncing.html
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