
Gisselquist
Technology, LLC

6. Transmitting

Data Words

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

2 / 54

Debugging is one of the hardest parts of digital logic design

˝ You can’t see what’s happening inside the FPGA
˝ LED’s are one solution

– FPGA’s operate 50MHz+
– Your eye operates at ă 60Hz

˝ The serial port can be a second solution

Let’s learn to send data through our serial port!
Objectives

˝ Transform Hello World into a debugging output
˝ Learn about formal abstraction
˝ Experiment with using ncurses with Verilator
˝ Extract internal design variables from within Verilator

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

Data Transmitter

Lesson Overview

Ź
Data
Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

3 / 54

Let’s transmit a word of data

i_clk

i_stb

o_busy

i_data data

tx_stb

tx_data 0 x h h h h h h h h \r \n

Each word will . . .

˝ Start with 0x

˝ Contain the number sent, but in hexadecimal

this is much easier than doing decimal!
Four bits can be encoded at a time

˝ End with a carriage return / line-feed pair

Data Transmitter

Lesson Overview

Ź
Data
Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

4 / 54

You should know how to build this design already

i_clk

i_stb

o_busy

i_data data

tx_stb

tx_data 0 x h h h h h h h h \r \n

Remember how we’ve built state machines before

˝ In this case, you have two triggers

– One trigger, i_stb, starts the process
– A busy line from the serial port, tx_busy (not shown),

controls the movement from one character to the next

˝ This design will be the focus of this lesson

Data Transmitter

Lesson Overview

Ź
Data
Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

4 / 54

You should know how to build this design already

i_clk

i_stb

o_busy

i_data data

tx_stb

tx_data 0 x h h h h h h h h \r \n

i_stb requests sending a word of data
o_busy: unable to accept another word

tx_stb requests a char be transmitted

Remember how we’ve built state machines before

˝ In this case, you have two triggers

– One trigger, i_stb, starts the process
– A busy line from the serial port, tx_busy (not shown),

controls the movement from one character to the next

˝ This design will be the focus of this lesson

Desired Structure

Lesson Overview

Data Transmitter

Ź
Desired
Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

5 / 54

Our overall design will look like this:

˝ Some event will trigger a counter
˝ A second module will detect that the counter has changed
˝ Finally we’ll output the result
˝ We’ll use txuart.v from the last exercise

Let’s take a quick look at counter.v and chgdetector.v

Creating a Counter

Lesson Overview

Data Transmitter

Desired Structure

Ź Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

6 / 54

You should already know how to make an event counter

module counter (i_clk , i_event , o_counter) ;
input wire i_clk , i_event ;
output reg [3 1 : 0] o_counter ;

i n i t i a l o_counter = 0 ;
always @ (posedge i_clk)
i f (i_event)

o_counter <= o_counter + 1 ’b1 ;
endmodule

Feel free to add a reset if you would like

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

7 / 54

Detecting a change in the counter is also pretty easy

module chgdetector (i_clk , i_data ,
o_stb , o_data , i_busy) ;

// . . .
i n i t i a l { o_stb , o_data } = 0 ;
always @ (posedge i_clk)
i f (! i_busy)
begin

stb <= 0 ;
i f (o_data != i_data)
begin

stb <= 1 ’b1 ;
o_data <= i_data ;

end

end

endmodule

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

7 / 54

Detecting a change in the counter is also pretty easy

module chgdetector (i_clk , i_data ,
o_stb , o_data , i_busy) ;

// . . .
i n i t i a l { o_stb , o_data } = 0 ;
always @ (posedge i_clk)
i f (! i_busy)
begin

stb <= 0 ;
i f (o_data != i_data)
begin

stb <= 1 ’b1 ;
o_data <= i_data ;

end

end

endmodule

Nothing is allowed to change if i_busy
is true. That’s the case where a request
has been made, but it has yet to be ac-
cepted.

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

7 / 54

Detecting a change in the counter is also pretty easy

module chgdetector (i_clk , i_data ,
o_stb , o_data , i_busy) ;

// . . .
i n i t i a l { o_stb , o_data } = 0 ;
always @ (posedge i_clk)
i f (! i_busy)
begin

stb <= 0 ;
i f (o_data != i_data)
begin

stb <= 1 ’b1 ;
o_data <= i_data ;

end

end

endmodule

Otherwise, anytime the data changes, we set up
a request to transmit the new data.

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

8 / 54

What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ (posedge i_clk)
i f ((f_past_valid)

&($past (o_stb))&&($past (i_busy)))
as se r t ((o_stb)&&($stab le (o_data))) ;

Remember how this works? This says that . . .

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

8 / 54

What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ (posedge i_clk)
i f ((f_past_valid)

&($past (o_stb))&&($past (i_busy)))
as se r t ((o_stb)&&($stab le (o_data))) ;

Remember how this works? This says that . . .

– If both o_stb and i_busy are true on the same clock cycle
(i.e., the interface is stalled)

– Then request should remain outstanding on the next cycle
– . . . and the data should be the same on that next cycle
– $stable(o_data) is shorthand for o_data == $past(o_data)

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

9 / 54

What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ (posedge i_clk)
i f ((f_past_valid)

&($past (o_stb))&&($past (i_busy)))
as se r t ((o_stb)&&($stab le (o_data))) ;

˝ When o_stb rises, o_data should reflect the input

always @ (posedge i_clk)
i f ((f_past_valid)&&($rose (o_stb)))

as se r t (o_data == $past (i_data)) ;

$rose(o_stb) is shorthand for (o_stb[0] && !$past(o_stb[0]))

Change Detection

Lesson Overview

Data Transmitter

Desired Structure

Counter

Ź
Change
Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

9 / 54

What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ (posedge i_clk)
i f ((f_past_valid)

&($past (o_stb))&&($past (i_busy)))
as se r t ((o_stb)&&($stab le (o_data))) ;

˝ When o_stb rises, o_data should reflect the input

always @ (posedge i_clk)
i f ((f_past_valid)&&($rose (o_stb)))

as se r t (o_data == $past (i_data)) ;

$rose(o_stb) is shorthand for (o_stb[0] && !$past(o_stb[0]))

˝ Can you think of any other properties we might need?

Our focus: txdata

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

Ź txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

10 / 54

This lesson will focus on txdata.v

˝ We’ve already built txuart.v
˝ You should have no problems designing counter.v or

chgdetector.v

You are encouraged to do so on your own
– If not, you can find counter.v and chgdetector.v in

the course handouts

You should also have a good idea how to start on txdata.v.

˝ It’s not all that different from txuart.v or helloworld.v
˝ The example in the course handouts is broken

Our focus: txdata

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

Ź txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

11 / 54

Here’s the port list(s) we’ll design to

module txdata (i_clk , i_stb , i_data , o_busy ,
o_uart_tx) ;

// . . .
txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,

tx_stb , tx_data , o_uart_tx , tx_busy) ;
// . . .
endmodule

Our focus: txdata

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

Ź txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

11 / 54

Here’s the port list(s) we’ll design to

module txdata (i_clk , i_stb , i_data , o_busy ,
o_uart_tx) ;

// . . .
txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,

tx_stb , tx_data , o_uart_tx , tx_busy) ;
// . . .
endmodule

˝ If i_stb is true, we have a new value to send
˝ i_data will then contain that 32-bit value
˝ o_busy means we cannot accept data
˝ o_uart_tx is the 1-bit serial port output

Our focus: txdata

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

Ź txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

12 / 54

Here’s the port list(s) we’ll design to

module txdata (i_clk , i_stb , i_data , o_busy ,
o_uart_tx) ;

// . . .
txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,

tx_stb , tx_data , o_uart_tx , tx_busy) ;
// . . .
endmodule

˝ tx_stb requests data be transmitted
˝ tx_data is the 8-bit character to transmit
˝ tx_busy means the serial port transmitter is busy and cannot

accept data

State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

13 / 54

We can create a state diagram for this state machine too

State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

13 / 54

We can create a state diagram for this state machine too

We’ll start sending our message upon request (i_stb is true),
and advance to the next character any time the transmitter is
not busy (tx_busy is false)

State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

13 / 54

We can create a state diagram for this state machine too

In this chart, data is the 32-bit word we are sending, and hextu
just references the fact that we need to convert the various
nibbles to hexadecimal before outputting them

State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

13 / 54

We can create a state diagram for this state machine too

Remember, input data such as i_data are only valid as long
as the incoming request is valid (i_stb is high). We’ll need
to make a copy of that data once the request is made,
(i_stb) && (!o_busy), and then work off of that copy.

State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

14 / 54

We can even annotate this with state ID numbers

State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

15 / 54

The state machine should remind you of helloworld.v

always @ (posedge i_clk)
i f (! o_busy)
begin

i f (i_stb)
begin

state <= 1 ;
tx_stb <= 1 ;

end // e l s e s t a t e a l r e a d y == 0
end e l s e i f ((tx_stb)&&(!tx_busy))
begin

state <= state + 1 ;
i f (state >= 4 ’hd)
begin

tx_stb <= 1 ’b0 ;
state <= 0 ;

// . . .

Outgoing Data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Ź Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

16 / 54

The outgoing data is just a shift register

i n i t i a l sreg = 0 ;
always @ (posedge i_clk)
i f (! o_busy) // && (i s t b)

sreg <= i_data ;
e l s e i f ((! tx_busy)&&(state > 4 ’h1))

// Hold con s t an t u n t i l r ead
sreg <= { i_data [2 7 : 0] , 4 ’h0 } ;

Question:

Why aren’t we conditioning our load on i_stb as well?

Outgoing Data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Ź Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

17 / 54

Converting to hex is very straight forward

always @ (posedge i_clk)
case (sreg [3 1 : 2 8])
4 ’h0 : hex <= ”0” ;
4 ’h1 : hex <= ”1” ;
4 ’h2 : hex <= ”2” ;
4 ’h3 : hex <= ”3” ;
// . . .
4 ’h9 : hex <= ”9” ;
4 ’ha : hex <= ”a” ;
4 ’hb : hex <= ”b” ;
4 ’hc : hex <= ”c” ;
4 ’hd : hex <= ”d” ;
4 ’he : hex <= ”e” ;
4 ’hf : hex <= ” f ” ;
de fau l t : begin end

endcase

Outgoing Data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Ź Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

18 / 54

Converting to hex is very straight forward

always @ (posedge i_clk)
case (sreg [3 1 : 2 8])
4 ’h0 : hex <= ”0” ; // Va lue s i n quo t a t i o n
4 ’h1 : hex <= ”1” ; // marks s p e c i f y l i t e r a l
4 ’h2 : hex <= ”2” ; // 8´b i t v a l u e s w i th an
4 ’h3 : hex <= ”3” ; // ASCII encod ing
// . . .
4 ’h9 : hex <= ”9” ;
4 ’ha : hex <= ”a” ;
4 ’hb : hex <= ”b” ;
4 ’hc : hex <= ”c” ;
4 ’hd : hex <= ”d” ;
4 ’he : hex <= ”e” ;
4 ’hf : hex <= ” f ” ;
de fau l t : begin end

endcase

Outgoing Data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Ź Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

19 / 54

Converting to hex is very straight forward

always @ (posedge i_clk)
case (sreg [3 1 : 2 8])
4 ’h0 : hex <= ”0” ; // Va lue s i n quo t a t i o n
4 ’h1 : hex <= ”1” ; // marks s p e c i f y l i t e r a l
4 ’h2 : hex <= ”2” ; // 8´b i t v a l u e s w i th an
4 ’h3 : hex <= ”3” ; // ASCII encod ing
// . . .
4 ’h9 : hex <= ”9” ; // S t r i n g s work s i m i l a r l y
4 ’ha : hex <= ”a” ; // wi th the on l y d i f f e r e n c e
4 ’hb : hex <= ”b” ; // be i ng tha t s t r i n g
4 ’hc : hex <= ”c” ; // l i t e r a l s may be much
4 ’hd : hex <= ”d” ; // l o n g e r than 8´ b i t s
4 ’he : hex <= ”e” ;
4 ’hf : hex <= ” f ” ; // Example : A <= ”1234”;
de fau l t : begin end

endcase

Outgoing Data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Ź Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

20 / 54

Put together, here’s our code to transmit a byte

always @ (posedge i_clk)
case (state)
i f (! tx_busy)

case (state)
4 ’h1 : tx_data <= ”0” ; // These a r e the
4 ’h2 : tx_data <= ”x” ; // v a l u e s we ’ l l
4 ’h3 : tx_data <= hex ; // want to output
4 ’h4 : tx_data <= hex ; // at each s t a t e
// . . .
4 ’h9 : tx_data <= hex ;
4 ’ha : tx_data <= hex ;
4 ’hb : tx_data <= ”\ r ” ; // Ca r r i a g e r e t u r n
4 ’hc : tx_data <= ”\n” ; // Line´f e ed
de fau l t : tx_data <= ”Q” ; // A bad va l u e
endcase

Simulation

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Ź Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

21 / 54

Let’s do simulation after formal verification

˝ It’s easier to get a trace from formal
˝ Formal methods are often done faster
˝ etc.

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

22 / 54

Our design is getting large

˝ We’ve already verified txuart.v

˝ It would be nice not to have to do it again

Let’s simplify things instead!

˝ Let’s replace txuart.v with something that . . .

– Might or might not act like txuart.v

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

22 / 54

Our design is getting large

˝ We’ve already verified txuart.v

˝ It would be nice not to have to do it again

Let’s simplify things instead!

˝ Let’s replace txuart.v with something that . . .

– Might or might not act like txuart.v
– . . . at the solver’s discretion

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

22 / 54

Our design is getting large

˝ We’ve already verified txuart.v

˝ It would be nice not to have to do it again

Let’s simplify things instead!

˝ Let’s replace txuart.v with something that . . .

– Might or might not act like txuart.v
– . . . at the solver’s discretion
– Acting like txuart.v must remain a possibility

This is called abstraction

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

23 / 54

Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

23 / 54

Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done, or they

might not

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

23 / 54

Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done, or they

might not
˝ If our design passes in spite of what this abstract txuart does

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

23 / 54

Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [2 3 : 0]) txuarti (i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done, or they

might not
˝ If our design passes in spite of what this abstract txuart does,

then it will pass if txuart acts like it should

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

24 / 54

We’ll insist that our abstract UART is busy following any request

reg [1 : 0] f_minbusy ;

i n i t i a l f_minbusy = 0 ;
always @ (posedge i_clk)
i f ((tx_stb)&&(!tx_busy))

f_minbusy <= 2 ’ b01 ;
e l s e i f (f_minbusy != 2 ’ b00)

f_minbusy <= f_minbusy + 1 ’b1 ;

We can use f_minbusy to force any transmit request to take at
least four cycles before dropping the busy line

˝ f_minbusy is just a 2-bit counter
˝ After passing 3, it waits at zero for the next byte

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

25 / 54

We’ll insist that our abstract UART is busy following any request

reg [1 : 0] f_minbusy ;

i n i t i a l f_minbusy = 0 ;
always @ (posedge i_clk)
i f ((tx_stb)&&(!tx_busy))

f_minbusy <= 2 ’ b01 ;
e l s e i f (f_minbusy != 2 ’ b00)

f_minbusy <= f_minbusy + 1 ’b1 ;

always @ (∗)
i f (f_minbusy != 0)

assume (tx_busy) ;

Since (∗ anyseq ∗) values act like inputs to our design,
constraining them by an assumption is appropriate

Formal Verification

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Ź
Formal
Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

26 / 54

We’ll also insist it doesn’t become busy on its own

i n i t i a l assume (! tx_busy) ; // S t a r t s i d l e
always @ (posedge i_clk)
i f ($past (i_reset)) // Becomes i d l e a f t e r r e s e t

assume (! tx_busy) ;
e l s e i f (($past (tx_stb))&&(! $past (tx_busy)))

// Must become busy a f t e r a new r e qu e s t
assume (tx_busy) ;

e l s e i f (! $past (tx_busy))
// Otherwise , i t cannot become busy
// w i thou t a r e q u e s t
assume (! tx_busy) ;

Now we can build a proof without re-verifying txuart.v!

Cover

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Ź Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

27 / 54

Let’s see if this design works:

// Don ’ t f o r g e t to s e t the mode to cove r
// i n your SBY f i l e !
always @ (posedge i_clk)
i f (f_past_valid)

cover ($ f e l l (o_busy)) ;

This would yield a trace with a reset

˝ It works, but it’s not very informative

Cover

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Ź Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

28 / 54

What if we except the reset?

// Don ’ t f o r g e t to s e t the mode to cove r
// i n your SBY f i l e !
always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past (i_reset)))

cover ($ f e l l (o_busy)) ;

We can now get a useful trace

˝ The trace starts with a request
˝ Works through the whole sequence
˝ Stops when the state machine is ready to start again

Cover

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Ź Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

29 / 54

What if we look for 0x12345678\r\n?

reg f_seen_data ;
i n i t i a l f_seen_data = 0 ;
always @ (posedge i_clk)
i f (i_reset)

f_seen_data <= 1 ’b0 ;
e l s e i f ((i_stb)&&(!o_busy)

&&(i_data == 32 ’ h12345678))
f_seen_data <= 1 ’b1 ;

always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past (i_reset))

&&(f_seen_data))
cover ($ f e l l (o_busy)) ;

Check out the trace.

Cover

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Ź Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

29 / 54

What if we look for 0x12345678\r\n?

reg f_seen_data ;
i n i t i a l f_seen_data = 0 ;
always @ (posedge i_clk)
i f (i_reset)

f_seen_data <= 1 ’b0 ;
e l s e i f ((i_stb)&&(!o_busy)

&&(i_data == 32 ’ h12345678))
f_seen_data <= 1 ’b1 ;

always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past (i_reset))

&&(f_seen_data))
cover ($ f e l l (o_busy)) ;

Check out the trace. Does your design work?

Cover

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Ź Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

30 / 54

What if we look for 0x12345678\r\n?

reg f_seen_data ;
i n i t i a l f_seen_data = 0 ;
always @ (posedge i_clk)
i f (i_reset)

f_seen_data <= 1 ’b0 ;
e l s e i f ((i_stb)&&(!o_busy)

&&(i_data == 32 ’ h12345678))
f_seen_data <= 1 ’b1 ;

Caution: It’s a snare to use something like f_seen_data outside
of a cover context

˝ We aren’t doing directed simulation
˝ The great power of formal is that it applies to all inputs
˝ We’re just picking an interesting input for a trace

Assertions

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Ź Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

31 / 54

Now, what assertions would be appropriate?

˝ We can assert state is legal
˝ That tx_stb != (state == 0)

˝ Can we assert that the first data output is a ”0”?
˝ That the second output is a ”1”?

Your turn: what would make the most sense here?

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Ź Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

32 / 54

Yes, we can assert a sequence takes place!

reg [1 2 : 0] f_p1reg ; // Prope r t y s´r eg

i n i t i a l f_p1reg = 0 ;
always @ (posedge i_clk)
i f (i_reset)

f_p1reg <= 0 ;
e l s e i f ((i_stb)&&(!o_busy))
begin

f_p1reg <= 1 ;
as se r t (f_p1reg == 0) ;

end e l s e i f (! tx_busy)
f_p1reg <= { f_p1reg [1 1 : 0] , 1 ’b0 } ;

f_p1reg[x] will now be true for stage x of any output sequence

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Ź Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

33 / 54

But what is f_p1reg? It’s a shift register

i stb

o busy

tx stb

tx data 0 x h h h h h h h h \r \n

f_p1reg[0]

f_p1reg[1]

f_p1reg[2]

f_p1reg[3]

f_p1reg[4]

˝ f_p1reg[x] is true anytime we are in stage x of our sequence
˝ We can use this when constructing formal properties

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Ź Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

34 / 54

Using f_p1reg[x] we can make assertions about the different
states in our sequence

always @ (posedge i_clk)
i f ((! tx_busy) | | (f_minbusy == 0))
begin

// I f the s e r i a l po r t i s r eady f o r
// the next cha r a c t e r , o r wh i l e we a r e
// wa i t i n g f o r the nex t cha r a c t e r , . . .
i f (f_p1reg [0])

as se r t ((tx_data == ”0”)
&&(state == 1)) ;

i f (f_p1reg [1])
as se r t ((tx_data == ”x”)

&&(state == 2)) ;
// e t c .

end

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Ź Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

35 / 54

Why use a shift register for f_p1reg[x]?

˝ A counter would also work for this sequence
˝ A shift register is more general and powerful

– A shift register can represent states in a sequence that
might overlap itself

– Perhaps such a sequence may be entered on every clock
cycle

– An example would be a peripheral that always responds to
any request in N cycles, yet never stalls

f_p1reg[x] allows us to represent general sequence states

Concurrent Assertions

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Ź
Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

36 / 54

Full System Verilog support would make this easier

sequence SEND (A , B) ;
(tx_stb)&&(state == A)&&(tx_data == B)
throughout

(tx_busy) [∗ 0 : $] ##1 (! tx_busy)
endsequence

This defines a sequence where

˝ (tx_stb)&&... must be true
˝ while tx_busy is true, and then
˝ until (and including) the clock where tx_busy is false

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Ź
Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

37 / 54

Full System Verilog support would make this easier

sequence SEND (A , B) ;
//

We could then string such sequences together in a property that
could be asserted

as se r t property (@ (posedge i_clk))
d i sab l e iff (i_reset)
(i_stb)&&(!o_busy)
|=> SEND (1 , ”0”) // F i r s t s t a t e
##1 SEND (2 , ”x”) // Second , e t c
// . . .

˝ A |=> B means if A, then B is asserted true on the next clock
˝ ##1 here means one clock later

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Ź
Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

38 / 54

Full System Verilog support would make this easier

sequence SEND (A , B) ;
//

We could then string such sequences together in a property that
could be asserted

as se r t property (@ (posedge i_clk))
d i sab l e iff (i_reset)
(i_stb)&&(!o_busy)
|=> SEND (1 , ”0”) // F i r s t s t a t e
##1 SEND (2 , ”x”) // Second , e t c
// . . .

SymbiYosys support for sequences requires a license

Sequence

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Ź
Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

38 / 54

Full System Verilog support would make this easier

sequence SEND (A , B) ;
//

We could then string such sequences together in a property that
could be asserted

as se r t property (@ (posedge i_clk))
d i sab l e iff (i_reset)
(i_stb)&&(!o_busy)
|=> SEND (1 , ”0”) // F i r s t s t a t e
##1 SEND (2 , ”x”) // Second , e t c
// . . .

SymbiYosys support for sequences requires a license

˝ f_p1reg let’s us do roughly the same thing

Exercise #1

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Ź
Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

39 / 54

Your turn!
Take a moment now to . . .

˝ Create your txdata.v, or
˝ Download my broken one, and then
˝ Formally verify it

– Add such assertions as you deem fit
– Make sure you get a trace showing it working

Does your design work?

Simulation

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Ź Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

40 / 54

Let’s move on to simulation

˝ Let’s use the simulator to count key presses
˝ ncurses + Verilator offers a quick debugging environment

– Every time a key is pressed, output a new count value
– We’ll use getch() to get key presses immediately

You may need to download and install ncurses-dev

– We’ll adjust uartsim() to print to the screen

˝ You can also examine internal register values with Verilator

– While the design is running

Let’s look at how we’d do these things

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

41 / 54

ncurses is an old-fashioned text library

˝ It allows us easy access to key press information
˝ We can write to various locations of the screen
˝ etc.
˝ The original ZipCPU debugger was written with ncurses

We’ll only scratch the surface here

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
http://zipcpu.com/zipcpu/2017/07/26/cpu-sim-debugger.html

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

42 / 54

Starting ncurses requires some boilerplate

#inc l ude <ncurses >

// ...

i n t main(i n t argc , char ** argv) {

// ...

i n i t s c r ();

raw();

noecho ();

keypad(s td sc r , t rue);

h a l f d e l a y (1);

˝ This initializes the curses environment
˝ Turns off line handling and echo
˝ Decodes special keys (like escape) for us
˝ halfdelay(1) – Doesn’t wait for keypresses

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

43 / 54

Our inner loop will start by checking for keypresses

do {

done = f a l s e ;

tb ->m core -> i e v e n t = 0;

// Ket a keypress

chv = getch ();

i f (chv == KEY ESCAPE)

// Exit on escape

done = t rue ;

e l s e i f (chv != ERR)

// Key was pressed

tb ->m core -> i e v e n t = 1;

tb -> t i c k ();

(* uar t)(tb ->m core -> o ua r t t x);

} wh i l e (!done);

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

44 / 54

We can speed this up too:

do {

// ...

f o r (i n t k=0; k<1000; k++) {

tb -> t i c k ();

(* uar t)(tb ->m core -> o ua r t t x);

tb ->m core -> i e v e n t = 0;

}

} wh i l e (!done);

˝ getch() waits 1{10th of a second for a keypress

– This is because we called halfdelay(1);

˝ This will run 1000 simulation ticks per getch() call

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

45 / 54

We can also count given keypresses

do {

// ...

f o r (i n t k=0; k<1000; k++) {

tb -> t i c k ();

(* uar t)(tb ->m core -> o ua r t t x);

keyp re s se s

+= tb ->m core -> i e v e n t ;

tb ->m core -> i e v e n t = 0;

}

} wh i l e (!done);

We’ll print this number out before we are done

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

46 / 54

We’ll also need to replace the putchar() in uartsim.cpp

˝ ncurses requires we use addch()

// if character received

i f (m rx data != ’\r’)

addch(m rx data);

˝ No flush is necessary, getch() handles that
˝ ’\r’ would clear our line, so we keep from printing it

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

ncurses

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

Ź ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

47 / 54

endwin() ends the ncurses environment

endwin ();

p r i n t f ("\n\nSimulation complete\n");

p r i n t f ("%4d key presses sent\n", keyp re s se s);

This is nice, but

˝ wouldn’t you also like a summary of keypresses the design
counted?

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

Verilator data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Ź Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

48 / 54

Verilator maintains your entire design in a C++ object

˝ With a little work, we can find our variables
˝ A quick grep through Vthedesign.h reveals ...
˝ v DOT counterv contains our counter’s value

– I use an older version of Verilator
– Modern versions place this in thedesign DOT counterv

– Supporting both requires a little work

˝ You can often find other values like this

– Grep on your variables name
– Be aware, Verilator will pick which of many names to give

a value
– Output wires may go by the name of their parent’s value

Verilator data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Ź Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

49 / 54

This little adjustment will allow us to simplify the reference to
our counter

#i f d e f OLD_VERILATOR

#de f i n e VVAR(X) v__DOT_ ## A

#e l s e

#de f i n e VVAR(X) thedesign__DOT_ ##A

#end i f

#de f i n e counterv VVAR(_counterv)

˝ If OLD VERILATOR is defined (my old version)

– counterv evaluates to v DOT counterv

˝ Otherwise counterv is replaced by

– thedesign DOT counterv

Verilator data

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Ź Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

50 / 54

We can now output our current counter

endwin ();

p r i n t f ("\n\nSimulation complete\n");

p r i n t f ("%4d key presses sent\n",

keyp re s se s);

p r i n t f ("%4d key presses registered\n",

tb ->m core -> counterv);

Testbench build

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Ź Testbench build

Exercise #2

Exercise #3

Conclusion

51 / 54

Two changes are required to our build script

˝ If you want to define NEW VERILATOR or
OLD VERILATOR . . .

– You’ll need to do some processing on Verilator’s version
– The vversion.sh file does this, returning either

-DOLD VERILATOR or -DNEW VERILATOR

– We can use this output in our g++ command line
– Alternatively, you can just adjust the file for your version

˝ We need to reference -lncurses in our Makefile when
building our executable

Exercise #2

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Ź Exercise #2

Exercise #3

Conclusion

52 / 54

Your turn!
Build and experiment with the simulation

˝ Using your txdata.v
˝ main() is found in thedesign tb.cpp in the handouts
˝ Experiment with . . .

– Adjusting the number of tb->tick() calls between calls to
getch()

– Does this speed up or slow down your design?
– Are all of your keypresses recognized?
– What happens when you press the key while the design is

busy?

Exercise #3

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Ź Exercise #3

Conclusion

53 / 54

Only now is it time to test this in hardware

˝ You’ll need to test for button changes

always @ (posedge i_clk)
last_btn <= i_btn ;

ass ign w_event = (i_btn)&&(!last_btn) ;

˝ Does it work?

– Does it count once per keypress?
– Does the counter look reasonable?

My implementation experienced several anomalies.

˝ We’ll discuss those in the next lesson

Conclusion

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Ź Conclusion

54 / 54

What did we learn this lesson?

˝ How to formally verify a part of a design, and not just the
leaf modules

˝ Creating interesting traces with cover
˝ Subtle timing differences can be annoying
˝ How to use Verilator with ncurses
˝ Extracting an internal design value from within a Verilator

simulation

We learned how to get information back out from within the
hardware

˝ We’ll discuss the hazards of asynchronous inputs more in the
next lesson

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO

	
	Lesson Overview
	Data Transmitter
	Desired Structure
	Creating a Counter
	Change Detection
	Our focus: txdata
	State diagram
	Outgoing Data
	Formal Verification
	Cover
	Assertions
	Sequence
	Sequence
	Concurrent Assertions
	Simulation
	ncurses
	Verilator data
	Testbench build
	Exercise #2
	Exercise #3
	Conclusion

