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Debugging is one of the hardest parts of digital logic design

˝ You can’t see what’s happening inside the FPGA
˝ LED’s are one solution

– FPGA’s operate 50MHz+
– Your eye operates at ă 60Hz

˝ The serial port can be a second solution

Let’s learn to send data through our serial port!
Objectives

˝ Transform Hello World into a debugging output
˝ Learn about formal abstraction
˝ Experiment with using ncurses with Verilator
˝ Extract internal design variables from within Verilator

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
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Let’s transmit a word of data

i_clk

i_stb

o_busy

i_data data

tx_stb

tx_data 0 x h h h h h h h h \r \n

Each word will . . .

˝ Start with 0x

˝ Contain the number sent, but in hexadecimal

this is much easier than doing decimal!
Four bits can be encoded at a time

˝ End with a carriage return / line-feed pair
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You should know how to build this design already

i_clk

i_stb

o_busy

i_data data

tx_stb

tx_data 0 x h h h h h h h h \r \n

Remember how we’ve built state machines before

˝ In this case, you have two triggers

– One trigger, i_stb, starts the process
– A busy line from the serial port, tx_busy (not shown),

controls the movement from one character to the next

˝ This design will be the focus of this lesson
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You should know how to build this design already

i_clk

i_stb

o_busy

i_data data

tx_stb

tx_data 0 x h h h h h h h h \r \n

i_stb requests sending a word of data
o_busy: unable to accept another word

tx_stb requests a char be transmitted

Remember how we’ve built state machines before

˝ In this case, you have two triggers

– One trigger, i_stb, starts the process
– A busy line from the serial port, tx_busy (not shown),

controls the movement from one character to the next

˝ This design will be the focus of this lesson
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Our overall design will look like this:

˝ Some event will trigger a counter
˝ A second module will detect that the counter has changed
˝ Finally we’ll output the result
˝ We’ll use txuart.v from the last exercise

Let’s take a quick look at counter.v and chgdetector.v



Creating a Counter

Lesson Overview

Data Transmitter

Desired Structure

Ź Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

6 / 54

You should already know how to make an event counter

module counter ( i_clk , i_event , o_counter ) ;
input wire i_clk , i_event ;
output reg [ 3 1 : 0 ] o_counter ;

i n i t i a l o_counter = 0 ;
always @ ( posedge i_clk )
i f ( i_event )

o_counter <= o_counter + 1 ’b1 ;
endmodule

Feel free to add a reset if you would like
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Detecting a change in the counter is also pretty easy

module chgdetector ( i_clk , i_data ,
o_stb , o_data , i_busy ) ;

// . . .
i n i t i a l { o_stb , o_data } = 0 ;
always @ ( posedge i_clk )
i f ( ! i_busy )
begin

stb <= 0 ;
i f ( o_data != i_data )
begin

stb <= 1 ’b1 ;
o_data <= i_data ;

end

end

endmodule
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Detecting a change in the counter is also pretty easy

module chgdetector ( i_clk , i_data ,
o_stb , o_data , i_busy ) ;

// . . .
i n i t i a l { o_stb , o_data } = 0 ;
always @ ( posedge i_clk )
i f ( ! i_busy )
begin

stb <= 0 ;
i f ( o_data != i_data )
begin

stb <= 1 ’b1 ;
o_data <= i_data ;

end

end

endmodule

Nothing is allowed to change if i_busy
is true. That’s the case where a request
has been made, but it has yet to be ac-
cepted.
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Detecting a change in the counter is also pretty easy

module chgdetector ( i_clk , i_data ,
o_stb , o_data , i_busy ) ;

// . . .
i n i t i a l { o_stb , o_data } = 0 ;
always @ ( posedge i_clk )
i f ( ! i_busy )
begin

stb <= 0 ;
i f ( o_data != i_data )
begin

stb <= 1 ’b1 ;
o_data <= i_data ;

end

end

endmodule

Otherwise, anytime the data changes, we set up
a request to transmit the new data.
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What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ ( posedge i_clk )
i f ( ( f_past_valid )

&($past ( o_stb ))&&($past ( i_busy ) ) )
as se r t ( ( o_stb)&&($stab le ( o_data ) ) ) ;

Remember how this works? This says that . . .
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What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ ( posedge i_clk )
i f ( ( f_past_valid )

&($past ( o_stb ))&&($past ( i_busy ) ) )
as se r t ( ( o_stb)&&($stab le ( o_data ) ) ) ;

Remember how this works? This says that . . .

– If both o_stb and i_busy are true on the same clock cycle
(i.e., the interface is stalled)

– Then request should remain outstanding on the next cycle
– . . . and the data should be the same on that next cycle
– $stable(o_data) is shorthand for o_data == $past(o_data)
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What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ ( posedge i_clk )
i f ( ( f_past_valid )

&($past ( o_stb ))&&($past ( i_busy ) ) )
as se r t ( ( o_stb)&&($stab le ( o_data ) ) ) ;

˝ When o_stb rises, o_data should reflect the input

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($rose ( o_stb ) ) )

as se r t ( o_data == $past ( i_data ) ) ;

$rose(o_stb) is shorthand for (o_stb[0] && !$past(o_stb[0]))
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What formal properties might we use here?

˝ Any output value should remain unchanged until accepted

// Remember t h i s p r o p e r t y ?
always @ ( posedge i_clk )
i f ( ( f_past_valid )

&($past ( o_stb ))&&($past ( i_busy ) ) )
as se r t ( ( o_stb)&&($stab le ( o_data ) ) ) ;

˝ When o_stb rises, o_data should reflect the input

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($rose ( o_stb ) ) )

as se r t ( o_data == $past ( i_data ) ) ;

$rose(o_stb) is shorthand for (o_stb[0] && !$past(o_stb[0]))

˝ Can you think of any other properties we might need?
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This lesson will focus on txdata.v

˝ We’ve already built txuart.v
˝ You should have no problems designing counter.v or

chgdetector.v

You are encouraged to do so on your own
– If not, you can find counter.v and chgdetector.v in

the course handouts

You should also have a good idea how to start on txdata.v.

˝ It’s not all that different from txuart.v or helloworld.v
˝ The example in the course handouts is broken
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Here’s the port list(s) we’ll design to

module txdata ( i_clk , i_stb , i_data , o_busy ,
o_uart_tx ) ;

// . . .
txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,

tx_stb , tx_data , o_uart_tx , tx_busy ) ;
// . . .
endmodule
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Here’s the port list(s) we’ll design to

module txdata ( i_clk , i_stb , i_data , o_busy ,
o_uart_tx ) ;

// . . .
txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,

tx_stb , tx_data , o_uart_tx , tx_busy ) ;
// . . .
endmodule

˝ If i_stb is true, we have a new value to send
˝ i_data will then contain that 32-bit value
˝ o_busy means we cannot accept data
˝ o_uart_tx is the 1-bit serial port output
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Here’s the port list(s) we’ll design to

module txdata ( i_clk , i_stb , i_data , o_busy ,
o_uart_tx ) ;

// . . .
txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,

tx_stb , tx_data , o_uart_tx , tx_busy ) ;
// . . .
endmodule

˝ tx_stb requests data be transmitted
˝ tx_data is the 8-bit character to transmit
˝ tx_busy means the serial port transmitter is busy and cannot

accept data



State diagram

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

Ź State diagram

Outgoing Data

Formal Verification

Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

13 / 54

We can create a state diagram for this state machine too
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We can create a state diagram for this state machine too

We’ll start sending our message upon request (i_stb is true),
and advance to the next character any time the transmitter is
not busy (tx_busy is false)
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We can create a state diagram for this state machine too

In this chart, data is the 32-bit word we are sending, and hextu
just references the fact that we need to convert the various
nibbles to hexadecimal before outputting them
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We can create a state diagram for this state machine too

Remember, input data such as i_data are only valid as long
as the incoming request is valid (i_stb is high). We’ll need
to make a copy of that data once the request is made,
(i_stb) && (!o_busy), and then work off of that copy.
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We can even annotate this with state ID numbers
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The state machine should remind you of helloworld.v

always @ ( posedge i_clk )
i f ( ! o_busy )
begin

i f ( i_stb )
begin

state <= 1 ;
tx_stb <= 1 ;

end // e l s e s t a t e a l r e a d y == 0
end e l s e i f ( ( tx_stb )&&(!tx_busy ) )
begin

state <= state + 1 ;
i f ( state >= 4 ’hd )
begin

tx_stb <= 1 ’b0 ;
state <= 0 ;

// . . .
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The outgoing data is just a shift register

i n i t i a l sreg = 0 ;
always @ ( posedge i_clk )
i f ( ! o_busy ) // && ( i s t b )

sreg <= i_data ;
e l s e i f ( ( ! tx_busy)&&(state > 4 ’h1 ) )

// Hold con s t an t u n t i l r ead
sreg <= { i_data [ 2 7 : 0 ] , 4 ’h0 } ;

Question:

Why aren’t we conditioning our load on i_stb as well?
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Converting to hex is very straight forward

always @ ( posedge i_clk )
case ( sreg [ 3 1 : 2 8 ] )
4 ’h0 : hex <= ”0” ;
4 ’h1 : hex <= ”1” ;
4 ’h2 : hex <= ”2” ;
4 ’h3 : hex <= ”3” ;
// . . .
4 ’h9 : hex <= ”9” ;
4 ’ha : hex <= ”a” ;
4 ’hb : hex <= ”b” ;
4 ’hc : hex <= ”c” ;
4 ’hd : hex <= ”d” ;
4 ’he : hex <= ”e” ;
4 ’hf : hex <= ” f ” ;
de fau l t : begin end

endcase
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Converting to hex is very straight forward

always @ ( posedge i_clk )
case ( sreg [ 3 1 : 2 8 ] )
4 ’h0 : hex <= ”0” ; // Va lue s i n quo t a t i o n
4 ’h1 : hex <= ”1” ; // marks s p e c i f y l i t e r a l
4 ’h2 : hex <= ”2” ; // 8´b i t v a l u e s w i th an
4 ’h3 : hex <= ”3” ; // ASCII encod ing
// . . .
4 ’h9 : hex <= ”9” ;
4 ’ha : hex <= ”a” ;
4 ’hb : hex <= ”b” ;
4 ’hc : hex <= ”c” ;
4 ’hd : hex <= ”d” ;
4 ’he : hex <= ”e” ;
4 ’hf : hex <= ” f ” ;
de fau l t : begin end

endcase
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Converting to hex is very straight forward

always @ ( posedge i_clk )
case ( sreg [ 3 1 : 2 8 ] )
4 ’h0 : hex <= ”0” ; // Va lue s i n quo t a t i o n
4 ’h1 : hex <= ”1” ; // marks s p e c i f y l i t e r a l
4 ’h2 : hex <= ”2” ; // 8´b i t v a l u e s w i th an
4 ’h3 : hex <= ”3” ; // ASCII encod ing
// . . .
4 ’h9 : hex <= ”9” ; // S t r i n g s work s i m i l a r l y
4 ’ha : hex <= ”a” ; // wi th the on l y d i f f e r e n c e
4 ’hb : hex <= ”b” ; // be i ng tha t s t r i n g
4 ’hc : hex <= ”c” ; // l i t e r a l s may be much
4 ’hd : hex <= ”d” ; // l o n g e r than 8´ b i t s
4 ’he : hex <= ”e” ;
4 ’hf : hex <= ” f ” ; // Example : A <= ”1234”;
de fau l t : begin end

endcase
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Put together, here’s our code to transmit a byte

always @ ( posedge i_clk )
case ( state )
i f ( ! tx_busy )

case ( state )
4 ’h1 : tx_data <= ”0” ; // These a r e the
4 ’h2 : tx_data <= ”x” ; // v a l u e s we ’ l l
4 ’h3 : tx_data <= hex ; // want to output
4 ’h4 : tx_data <= hex ; // at each s t a t e
// . . .
4 ’h9 : tx_data <= hex ;
4 ’ha : tx_data <= hex ;
4 ’hb : tx_data <= ”\ r ” ; // Ca r r i a g e r e t u r n
4 ’hc : tx_data <= ”\n” ; // Line´f e ed
de fau l t : tx_data <= ”Q” ; // A bad va l u e
endcase
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Let’s do simulation after formal verification

˝ It’s easier to get a trace from formal
˝ Formal methods are often done faster
˝ etc.
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Our design is getting large

˝ We’ve already verified txuart.v

˝ It would be nice not to have to do it again

Let’s simplify things instead!

˝ Let’s replace txuart.v with something that . . .

– Might or might not act like txuart.v
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Our design is getting large

˝ We’ve already verified txuart.v

˝ It would be nice not to have to do it again

Let’s simplify things instead!

˝ Let’s replace txuart.v with something that . . .

– Might or might not act like txuart.v
– . . . at the solver’s discretion
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Our design is getting large

˝ We’ve already verified txuart.v

˝ It would be nice not to have to do it again

Let’s simplify things instead!

˝ Let’s replace txuart.v with something that . . .

– Might or might not act like txuart.v
– . . . at the solver’s discretion
– Acting like txuart.v must remain a possibility

This is called abstraction
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Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy ) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done
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Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy ) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done, or they

might not
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Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy ) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done, or they

might not
˝ If our design passes in spite of what this abstract txuart does
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Here’s how we’ll do it:

‘ i f n d e f FORMAL

txuart #(UART_SETUP [ 2 3 : 0 ] ) txuarti ( i_clk ,
tx_stb , tx_data , o_uart_tx , tx_busy ) ;

‘ e l s e

(∗ anyseq ∗) wire serial_busy , serial_out ;
ass ign o_uart_tx = serial_out ;
ass ign tx_busy = serial_busy ;

˝ (∗ anyseq ∗) allows the solver to pick the values of
serial_busy and serial_out

˝ (∗ anyseq ∗) values can change from one clock to the next
˝ They might match what txuart would’ve done, or they

might not
˝ If our design passes in spite of what this abstract txuart does,

then it will pass if txuart acts like it should
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We’ll insist that our abstract UART is busy following any request

reg [ 1 : 0 ] f_minbusy ;

i n i t i a l f_minbusy = 0 ;
always @ ( posedge i_clk )
i f ( ( tx_stb )&&(!tx_busy ) )

f_minbusy <= 2 ’ b01 ;
e l s e i f ( f_minbusy != 2 ’ b00 )

f_minbusy <= f_minbusy + 1 ’b1 ;

We can use f_minbusy to force any transmit request to take at
least four cycles before dropping the busy line

˝ f_minbusy is just a 2-bit counter
˝ After passing 3, it waits at zero for the next byte
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We’ll insist that our abstract UART is busy following any request

reg [ 1 : 0 ] f_minbusy ;

i n i t i a l f_minbusy = 0 ;
always @ ( posedge i_clk )
i f ( ( tx_stb )&&(!tx_busy ) )

f_minbusy <= 2 ’ b01 ;
e l s e i f ( f_minbusy != 2 ’ b00 )

f_minbusy <= f_minbusy + 1 ’b1 ;

always @ (∗ )
i f ( f_minbusy != 0)

assume ( tx_busy ) ;

Since (∗ anyseq ∗) values act like inputs to our design,
constraining them by an assumption is appropriate
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We’ll also insist it doesn’t become busy on its own

i n i t i a l assume ( ! tx_busy ) ; // S t a r t s i d l e
always @ ( posedge i_clk )
i f ( $past ( i_reset ) ) // Becomes i d l e a f t e r r e s e t

assume ( ! tx_busy ) ;
e l s e i f ( ( $past ( tx_stb ))&&(! $past ( tx_busy ) ) )

// Must become busy a f t e r a new r e qu e s t
assume ( tx_busy ) ;

e l s e i f ( ! $past ( tx_busy ) )
// Otherwise , i t cannot become busy
// w i thou t a r e q u e s t
assume ( ! tx_busy ) ;

Now we can build a proof without re-verifying txuart.v!
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Let’s see if this design works:

// Don ’ t f o r g e t to s e t the mode to cove r
// i n your SBY f i l e !
always @ ( posedge i_clk )
i f ( f_past_valid )

cover ( $ f e l l ( o_busy ) ) ;

This would yield a trace with a reset

˝ It works, but it’s not very informative
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What if we except the reset?

// Don ’ t f o r g e t to s e t the mode to cove r
// i n your SBY f i l e !
always @ ( posedge i_clk )
i f ( ( f_past_valid )&&(!$past ( i_reset ) ) )

cover ( $ f e l l ( o_busy ) ) ;

We can now get a useful trace

˝ The trace starts with a request
˝ Works through the whole sequence
˝ Stops when the state machine is ready to start again
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What if we look for 0x12345678\r\n?

reg f_seen_data ;
i n i t i a l f_seen_data = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

f_seen_data <= 1 ’b0 ;
e l s e i f ( ( i_stb )&&(!o_busy )

&&(i_data == 32 ’ h12345678 ) )
f_seen_data <= 1 ’b1 ;

always @ ( posedge i_clk )
i f ( ( f_past_valid )&&(!$past ( i_reset ) )

&&(f_seen_data ) )
cover ( $ f e l l ( o_busy ) ) ;

Check out the trace.
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What if we look for 0x12345678\r\n?

reg f_seen_data ;
i n i t i a l f_seen_data = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

f_seen_data <= 1 ’b0 ;
e l s e i f ( ( i_stb )&&(!o_busy )

&&(i_data == 32 ’ h12345678 ) )
f_seen_data <= 1 ’b1 ;

always @ ( posedge i_clk )
i f ( ( f_past_valid )&&(!$past ( i_reset ) )

&&(f_seen_data ) )
cover ( $ f e l l ( o_busy ) ) ;

Check out the trace. Does your design work?



Cover

Lesson Overview

Data Transmitter

Desired Structure

Counter

Change Detection

txdata

State diagram

Outgoing Data

Formal Verification

Ź Cover

Assertions

Sequence

Sequence

Concurrent
Assertions

Simulation

ncurses

Verilator data

Testbench build

Exercise #2

Exercise #3

Conclusion

30 / 54

What if we look for 0x12345678\r\n?

reg f_seen_data ;
i n i t i a l f_seen_data = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

f_seen_data <= 1 ’b0 ;
e l s e i f ( ( i_stb )&&(!o_busy )

&&(i_data == 32 ’ h12345678 ) )
f_seen_data <= 1 ’b1 ;

Caution: It’s a snare to use something like f_seen_data outside
of a cover context

˝ We aren’t doing directed simulation
˝ The great power of formal is that it applies to all inputs
˝ We’re just picking an interesting input for a trace
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Now, what assertions would be appropriate?

˝ We can assert state is legal
˝ That tx_stb != (state == 0)

˝ Can we assert that the first data output is a ”0”?
˝ That the second output is a ”1”?

Your turn: what would make the most sense here?
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Yes, we can assert a sequence takes place!

reg [ 1 2 : 0 ] f_p1reg ; // Prope r t y s´r eg

i n i t i a l f_p1reg = 0 ;
always @ ( posedge i_clk )
i f ( i_reset )

f_p1reg <= 0 ;
e l s e i f ( ( i_stb )&&(!o_busy ) )
begin

f_p1reg <= 1 ;
as se r t ( f_p1reg == 0 ) ;

end e l s e i f ( ! tx_busy )
f_p1reg <= { f_p1reg [ 1 1 : 0 ] , 1 ’b0 } ;

f_p1reg[x] will now be true for stage x of any output sequence
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But what is f_p1reg? It’s a shift register

i stb

o busy

tx stb

tx data 0 x h h h h h h h h \r \n

f_p1reg[0]

f_p1reg[1]

f_p1reg[2]

f_p1reg[3]

f_p1reg[4]

˝ f_p1reg[x] is true anytime we are in stage x of our sequence
˝ We can use this when constructing formal properties
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Using f_p1reg[x] we can make assertions about the different
states in our sequence

always @ ( posedge i_clk )
i f ( ( ! tx_busy ) | | ( f_minbusy == 0))
begin

// I f the s e r i a l po r t i s r eady f o r
// the next cha r a c t e r , o r wh i l e we a r e
// wa i t i n g f o r the nex t cha r a c t e r , . . .
i f ( f_p1reg [ 0 ] )

as se r t ( ( tx_data == ”0” )
&&(state == 1 ) ) ;

i f ( f_p1reg [ 1 ] )
as se r t ( ( tx_data == ”x” )

&&(state == 2 ) ) ;
// e t c .

end
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Why use a shift register for f_p1reg[x]?

˝ A counter would also work for this sequence
˝ A shift register is more general and powerful

– A shift register can represent states in a sequence that
might overlap itself

– Perhaps such a sequence may be entered on every clock
cycle

– An example would be a peripheral that always responds to
any request in N cycles, yet never stalls

f_p1reg[x] allows us to represent general sequence states
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Full System Verilog support would make this easier

sequence SEND (A , B ) ;
( tx_stb)&&(state == A)&&(tx_data == B )
throughout

( tx_busy ) [ ∗ 0 : $ ] ##1 ( ! tx_busy )
endsequence

This defines a sequence where

˝ (tx_stb)&&... must be true
˝ while tx_busy is true, and then
˝ until (and including) the clock where tx_busy is false
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Full System Verilog support would make this easier

sequence SEND (A , B ) ;
// . . . .

We could then string such sequences together in a property that
could be asserted

as se r t property (@ ( posedge i_clk ) )
d i sab l e iff ( i_reset )
( i_stb )&&(!o_busy )
|=> SEND (1 , ”0” ) // F i r s t s t a t e
##1 SEND (2 , ”x” ) // Second , e t c
// . . .

˝ A |=> B means if A, then B is asserted true on the next clock
˝ ##1 here means one clock later
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Full System Verilog support would make this easier

sequence SEND (A , B ) ;
// . . . .

We could then string such sequences together in a property that
could be asserted

as se r t property (@ ( posedge i_clk ) )
d i sab l e iff ( i_reset )
( i_stb )&&(!o_busy )
|=> SEND (1 , ”0” ) // F i r s t s t a t e
##1 SEND (2 , ”x” ) // Second , e t c
// . . .

SymbiYosys support for sequences requires a license
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Full System Verilog support would make this easier

sequence SEND (A , B ) ;
// . . . .

We could then string such sequences together in a property that
could be asserted

as se r t property (@ ( posedge i_clk ) )
d i sab l e iff ( i_reset )
( i_stb )&&(!o_busy )
|=> SEND (1 , ”0” ) // F i r s t s t a t e
##1 SEND (2 , ”x” ) // Second , e t c
// . . .

SymbiYosys support for sequences requires a license

˝ f_p1reg let’s us do roughly the same thing
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Your turn!
Take a moment now to . . .

˝ Create your txdata.v, or
˝ Download my broken one, and then
˝ Formally verify it

– Add such assertions as you deem fit
– Make sure you get a trace showing it working

Does your design work?
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Let’s move on to simulation

˝ Let’s use the simulator to count key presses
˝ ncurses + Verilator offers a quick debugging environment

– Every time a key is pressed, output a new count value
– We’ll use getch() to get key presses immediately

You may need to download and install ncurses-dev

– We’ll adjust uartsim() to print to the screen

˝ You can also examine internal register values with Verilator

– While the design is running

Let’s look at how we’d do these things

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
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ncurses is an old-fashioned text library

˝ It allows us easy access to key press information
˝ We can write to various locations of the screen
˝ etc.
˝ The original ZipCPU debugger was written with ncurses

We’ll only scratch the surface here

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
http://zipcpu.com/zipcpu/2017/07/26/cpu-sim-debugger.html
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Starting ncurses requires some boilerplate

#inc l ude <ncurses >

// ...

i n t main( i n t argc , char ** argv ) {

// ...

i n i t s c r ();

raw();

noecho ();

keypad( s td sc r , t rue );

h a l f d e l a y (1);

˝ This initializes the curses environment
˝ Turns off line handling and echo
˝ Decodes special keys (like escape) for us
˝ halfdelay(1) – Doesn’t wait for keypresses

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
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Our inner loop will start by checking for keypresses

do {

done = f a l s e ;

tb ->m core -> i e v e n t = 0;

// Ket a keypress

chv = getch ();

i f (chv == KEY ESCAPE)

// Exit on escape

done = t rue ;

e l s e i f (chv != ERR)

// Key was pressed

tb ->m core -> i e v e n t = 1;

tb -> t i c k ();

(* uar t )( tb ->m core -> o ua r t t x );

} wh i l e (!done);
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We can speed this up too:

do {

// ...

f o r ( i n t k=0; k<1000; k++) {

tb -> t i c k ();

(* uar t )( tb ->m core -> o ua r t t x );

tb ->m core -> i e v e n t = 0;

}

} wh i l e (!done);

˝ getch() waits 1{10th of a second for a keypress

– This is because we called halfdelay(1);

˝ This will run 1000 simulation ticks per getch() call
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We can also count given keypresses

do {

// ...

f o r ( i n t k=0; k<1000; k++) {

tb -> t i c k ();

(* uar t )( tb ->m core -> o ua r t t x );

keyp re s se s

+= tb ->m core -> i e v e n t ;

tb ->m core -> i e v e n t = 0;

}

} wh i l e (!done);

We’ll print this number out before we are done
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We’ll also need to replace the putchar() in uartsim.cpp

˝ ncurses requires we use addch()

// if character received

i f (m rx data != ’\r’)

addch(m rx data );

˝ No flush is necessary, getch() handles that
˝ ’\r’ would clear our line, so we keep from printing it

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
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endwin() ends the ncurses environment

endwin ();

p r i n t f ("\n\nSimulation complete\n");

p r i n t f ("%4d key presses sent\n", keyp re s se s );

This is nice, but

˝ wouldn’t you also like a summary of keypresses the design
counted?

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
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Verilator maintains your entire design in a C++ object

˝ With a little work, we can find our variables
˝ A quick grep through Vthedesign.h reveals ...
˝ v DOT counterv contains our counter’s value

– I use an older version of Verilator
– Modern versions place this in thedesign DOT counterv

– Supporting both requires a little work

˝ You can often find other values like this

– Grep on your variables name
– Be aware, Verilator will pick which of many names to give

a value
– Output wires may go by the name of their parent’s value
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This little adjustment will allow us to simplify the reference to
our counter

#i f d e f OLD_VERILATOR

#de f i n e VVAR(X) v__DOT_ ## A

#e l s e

#de f i n e VVAR(X) thedesign__DOT_ ##A

#end i f

#de f i n e counterv VVAR(_counterv)

˝ If OLD VERILATOR is defined (my old version)

– counterv evaluates to v DOT counterv

˝ Otherwise counterv is replaced by

– thedesign DOT counterv
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We can now output our current counter

endwin ();

p r i n t f ("\n\nSimulation complete\n");

p r i n t f ("%4d key presses sent\n",

keyp re s se s );

p r i n t f ("%4d key presses registered\n",

tb ->m core -> counterv );
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Two changes are required to our build script

˝ If you want to define NEW VERILATOR or
OLD VERILATOR . . .

– You’ll need to do some processing on Verilator’s version
– The vversion.sh file does this, returning either

-DOLD VERILATOR or -DNEW VERILATOR

– We can use this output in our g++ command line
– Alternatively, you can just adjust the file for your version

˝ We need to reference -lncurses in our Makefile when
building our executable
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Your turn!
Build and experiment with the simulation

˝ Using your txdata.v
˝ main() is found in thedesign tb.cpp in the handouts
˝ Experiment with . . .

– Adjusting the number of tb->tick() calls between calls to
getch()

– Does this speed up or slow down your design?
– Are all of your keypresses recognized?
– What happens when you press the key while the design is

busy?
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Only now is it time to test this in hardware

˝ You’ll need to test for button changes

always @ ( posedge i_clk )
last_btn <= i_btn ;

ass ign w_event = ( i_btn )&&(!last_btn ) ;

˝ Does it work?

– Does it count once per keypress?
– Does the counter look reasonable?

My implementation experienced several anomalies.

˝ We’ll discuss those in the next lesson
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What did we learn this lesson?

˝ How to formally verify a part of a design, and not just the
leaf modules

˝ Creating interesting traces with cover
˝ Subtle timing differences can be annoying
˝ How to use Verilator with ncurses
˝ Extracting an internal design value from within a Verilator

simulation

We learned how to get information back out from within the
hardware

˝ We’ll discuss the hazards of asynchronous inputs more in the
next lesson

http://tldp.org/HOWTO/NCURSES-Programming-HOWTO
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