
Gisselquist
Technology, LLC

5. Serial Port

Transmitter

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

2 / 58

Let’s see if we can do Hello World

˝ If you can do the LED sequencer, you can do this project
˝ We’ll be building a two module design
˝ And some awesome simulation capability

Objectives

˝ Build a serial port transmitter
˝ Be able to transmit Hello World!
˝ Clean up our Verilator work
˝ Simulate a serial port receiver

Serial Protocol

Lesson Overview

Ź Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

3 / 58

Let’s transmit a character

i clk

i wr

o busy

i data data

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

A serial transmission . . .

Serial Protocol

Lesson Overview

Ź Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

3 / 58

Let’s transmit a character

i clk

i wr

o busy

i data data

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

A serial transmission . . .

˝ Idles high

Serial Protocol

Lesson Overview

Ź Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

3 / 58

Let’s transmit a character

i clk

i wr

o busy

i data data

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

A serial transmission . . .

˝ Idles high
˝ Begins with a start bit (low)

Serial Protocol

Lesson Overview

Ź Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

3 / 58

Let’s transmit a character

i clk

i wr

o busy

i data data

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

A serial transmission . . .

˝ Idles high
˝ Begins with a start bit (low), ends with a stop bit (high)

Serial Protocol

Lesson Overview

Ź Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

3 / 58

Let’s transmit a character

i clk

i wr

o busy

i data data

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

A serial transmission . . .

˝ Idles high
˝ Begins with a start bit (low), ends with a stop bit (high)
˝ Sends a byte of data, LSB first

Do this, and you will have a serial port transmitter

Goal

Lesson Overview

Ź Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

4 / 58

Let’s add state ID’s to this diagram

i clk

i wr

o busy

i data data

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

state F 0 1 2 3 4 5 6 7 8 f

This will work for now

˝ Ten states to our state machine
˝ We’ll still need to slow it down later

State Variable

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

5 / 58

We can set o_busy together with our state

i n i t i a l { o_busy , state } = { 1 ’b0 , IDLE } ; //=15
always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

// S t a r t a new byte , s t a t e START=0
{ o_busy , state } <= { 1 ’b1 , START } ;

e l s e i f (state == IDLE)
// Stay i n IDLE = 15 or 0 x0 f
{ o_busy , state } <= { 1 ’b0 , IDLE } ;

e l s e i f (state < LAST)
begin

o_busy <= 1 ’b1 ;
state <= state + 1 ;

end e l s e // Return to IDLE
{ o_busy , state } <= { 1 ’b1 , IDLE } ;

Is this a Mealy or a Moore FSM?

Outgoing Data

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

6 / 58

The outgoing data is just a shift register

i n i t i a l lcl_data = 9 ’ h1ff ;
always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

// Load the r e g i s t e r
// S t a r t o u t pu t t i n g a z e r o
lcl_data <= { i_data , 1 ’b0 } ;

e l s e

// S h i f t r i g h t f o r more data
// S h i f t 1 ’ b1 i n from the l e f t
lcl_data <= { 1 ’b1 , lcl_data [8 : 1] } ;

ass ign o_uart_tx = lcl_data [0] ;

The output depends upon state only

Outgoing Data

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

6 / 58

The outgoing data is just a shift register

i n i t i a l lcl_data = 9 ’ h1ff ;
always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

// Load the r e g i s t e r
// S t a r t o u t pu t t i n g a z e r o
lcl_data <= { i_data , 1 ’b0 } ;

e l s e

// S h i f t r i g h t f o r more data
// S h i f t 1 ’ b1 i n from the l e f t
lcl_data <= { 1 ’b1 , lcl_data [8 : 1] } ;

ass ign o_uart_tx = lcl_data [0] ;

The output depends upon state only

˝ This is a Moore FSM

Clock divider

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

7 / 58

All that remains is an integer clock divider!

˝ We’ll adjust our logic above to only change on baud_stb

˝ . . . or (if idle) on (i_wr)&&(!o_busy)

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

counter <= CLOCKS_PER_BAUD´1;
e l s e i f (counter > 0)

counter <= counter ´ 1 ;
e l s e i f (state != IDLE)

counter <= CLOCKS_PER_BAUD´1;

ass ign baud_stb = (counter == 0) ;

Is counter a state variable?

Clock divider

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

7 / 58

All that remains is an integer clock divider!

˝ We’ll adjust our logic above to only change on baud_stb

˝ . . . or (if idle) on (i_wr)&&(!o_busy)

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

counter <= CLOCKS_PER_BAUD´1;
e l s e i f (counter > 0)

counter <= counter ´ 1 ;
e l s e i f (state != IDLE)

counter <= CLOCKS_PER_BAUD´1;

ass ign baud_stb = (counter == 0) ;

Is counter a state variable? Yes, even if it isn’t so named

A Common Mistake

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

8 / 58

All that remains is an integer clock divider!

˝ We’ll adjust our logic above to only change on baud_stb

˝ . . . or (if idle) on (i_wr)&&(!o_busy)

A common mistake is to condition the first transition on more
than (i_wr)&&(!o_busy)

˝ This risks another condition taking priority over
(i_wr)&&(!o_busy)

˝ Result is that the transmitter doesn’t notice the transmit
request

˝ This mistake can usually be caught using formal methods.

A Component

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

9 / 58

˝ i_wr requests a character (i_data) be transmitted
˝ Whenever o_busy is true, i_wr is ignored
˝ i_data is queued for transmission when (i_wr && !o_busy)

A Component

Lesson Overview

Serial Protocol

Ź Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

10 / 58

A good serial port

˝ Can be used again and again
˝ From one design to the next

Submodules

Lesson Overview

Serial Protocol

Implementation

Ź Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

11 / 58

Just like a printed circuit board (PCB)

˝ Logic from one component can be used within another
˝ Akin to placing multiple chips on a PCB
˝ Each module is typically called a core
˝ It’s possible to have multiple copies of the same module
˝ You can also place cores within cores within cores, etc.

Modules

Lesson Overview

Serial Protocol

Implementation

Ź Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

12 / 58

Two methods to use one module within another

1. Pass by ordered-list

txuart #(CLOCK_RATE_HZ / MYBAUDRATE)
mytxuart (clk , tx_stb , tx_data , o_uart ,

tx_busy) ;

˝ Ports must be given in order, and cannot be skipped
˝ The name of your new module, mytxuart must be unique

within its context
˝ Inputs to the module can come from either wires or registers
˝ Outputs from the module must be placed into wires
˝ Optionally, parameters within the module can be overridden

These are found in the #(...) block
Like the portlist, these can be done in matching order

Modules

Lesson Overview

Serial Protocol

Implementation

Ź Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

13 / 58

Two methods to use one module within another

1. Pass by port-order
2. Pass by port name

txuart #(.CLOCKS_PER_BAUD (CLOCK_RATE_HZ
/ MYBAUDRATE))

mytxuart (. i_clk (clk) ,
. i_wr (tx_stb) , . i_data (tx_data) ,
. o_busy (tx_busy) , . o_uart_tx (o_uart)) ;

˝ Ports and parameters may now be in any order
˝ They may also (optionally) be skipped
˝ You cannot mix calling conventions

– Either pass by port-order, or pass by port-name
– Never both

Top Level

Lesson Overview

Serial Protocol

Implementation

Submodules

Ź Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

14 / 58

We’ll need a message.

always @ (posedge i_clk)
case (tx_index)
4 ’h0 : tx_data <= ”H” ; // Could a l s o use a memory
4 ’h1 : tx_data <= ”e” ; // he r e
4 ’h2 : tx_data <= ” l ” ;
4 ’h3 : tx_data <= ” l ” ; // Because t h i s ca s e i s so
4 ’h4 : tx_data <= ”o” ; // sma l l , i t i s e q u i v a l e n t
4 ’h5 : tx_data <= ” , ” ; // to a memory
4 ’h6 : tx_data <= ” ” ;
4 ’h7 : tx_data <= ”W” ;
4 ’h8 : tx_data <= ”o” ;
// . . .
4 ’he : tx_msg <= ”\ r ” ; // Ca r r i a g e r e t u r n
4 ’hf : tx_msg <= ”\n” ; // L ine f e ed
endcase

Hello World

Lesson Overview

Serial Protocol

Implementation

Submodules

Ź Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

15 / 58

If we want our serial port to run Hello World, . . .

˝ it needs a driver, helloworld.v

// t x i n d e x t e l l s us what c h a r a c t e r to send next
always @ (posedge i_clk)
i f ((tx_stb)&&(!tx_busy))

tx_index <= tx_index + 1 ’b1 ;

// t x s t b r e q u e s t s a c h a r a c t e r be s en t
always @ (posedge i_clk)
i f (tx_restart)

tx_stb <= 1 ’b1 ;
e l s e i f ((tx_stb)&&(!tx_busy)&&(tx_index == 4 ’hf))

tx_stb <= 1 ’b0 ; // Wait f o r nex t second

We’ll need to restart this periodically

Hello World

Lesson Overview

Serial Protocol

Implementation

Submodules

Ź Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

16 / 58

If we want our serial port to run Hello World

˝ it needs a driver, helloworld.v
˝ It needs to be periodically restarted

// I n t e g e r c l o c k d i v i d e r
i n i t i a l hz_counter = 28 ’ h16 ;
always @ (posedge i_clk)
i f (hz_counter == 0)

hz_counter <= CLOCK_RATE_HZ ´ 1 ’b1 ;
e l s e

hz_counter <= hz_counter ´ 1 ’b1 ;

// And the once / s e c r e s t a r t s i g n a l
i n i t i a l tx_restart = 0 ;
always @ (posedge i_clk)

tx_restart <= (hz_counter == 1) ;

Philosophy

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Ź Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

17 / 58

Most HDL/FPGA courses stop here

˝ You have no way of knowing if you did it right other than
hardware test

˝ You can only debug using LED’s
˝ When it doesn’t work, you’ll never know why not
˝ They don’t teach you to use

– Simulation, or
– Formal methods

to find latent bugs in your design

The result is a lesson in frustration, rather than a celebration of
success

Philosophy

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Ź Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

17 / 58

Most HDL/FPGA courses stop here

˝ You have no way of knowing if you did it right other than
hardware test

˝ You can only debug using LED’s
˝ When it doesn’t work, you’ll never know why not
˝ They don’t teach you to use

– Simulation, or
– Formal methods

to find latent bugs in your design

The result is a lesson in frustration, rather than a celebration of
success
We can do better!

Philosophy

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Ź Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

18 / 58

Most HDL/FPGA courses stop here. We’ll keep going.

˝ Let us continue, and learn how to

1. Simulate, then
2. Formally verify

this design

Simulation

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

19 / 58

Our simulation is getting so big it is becoming annoying

˝ On every tick, we need to keep track of

– Current time (i.e. the number of clock ticks so far)
– The pointer to the Verilated Verilog code
– The pointer to our C++ trace object

˝ This means we either

– Pass lots of pointers around
– Keep multiple global variables
– Use a C++ class that keeps variables with the methods

that use them

Solution: a reusable Verilator template class!

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

20 / 58

Most of this task is just rearranging our simulation code

template < c l a s s VA> c l a s s TESTB {

pub l i c :

VA *m core;

Veri latedVcdC *m trace ;

u i n t 64 t m t ickcount ;

TESTB(vo id) : m trace (NULL),

m tickcount (0 l) {

m core = new VA;

Ve r i l a t e d :: traceEverOn (t rue);

m core -> i c l k = 0;

eva l ();

}

// ...

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

20 / 58

Most of this task is just rearranging our simulation code

template < c l a s s VA> c l a s s TESTB {

pub l i c :

VA *m core;

Veri latedVcdC *m trace ;

u i n t 64 t m t ickcount ;

TESTB(vo id) : m trace (NULL),

m tickcount (0 l) {

m core = new VA;

Ve r i l a t e d :: traceEverOn (t rue);

m core -> i c l k = 0;

eva l ();

}

// ...

Use a template class to only do this once

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

20 / 58

Most of this task is just rearranging our simulation code

template < c l a s s VA> c l a s s TESTB {

pub l i c :

VA *m core;

Veri latedVcdC *m trace ;

u i n t 64 t m t ickcount ;

TESTB(vo id) : m trace (NULL),

m tickcount (0 l) {

m core = new VA;

Ve r i l a t e d :: traceEverOn (t rue);

m core -> i c l k = 0;

eva l ();

}

// ...

Put our three trace variables here

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

20 / 58

Most of this task is just rearranging our simulation code

template < c l a s s VA> c l a s s TESTB {

pub l i c :

VA *m core;

Veri latedVcdC *m trace ;

u i n t 64 t m t ickcount ;

TESTB(vo id) : m trace (NULL),

m tickcount (0 l) {

m core = new VA;

Ve r i l a t e d :: traceEverOn (t rue);

m core -> i c l k = 0;

eva l ();

}

// ...

Initialize these values in the constructor

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

21 / 58

That’s the constructor, here’s the destructor

// ...

v i r t u a l ~TESTB(vo id) {

c l o s e t r a c e ();

de l e t e m core;

m core = NULL;

}

// ...

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

22 / 58

Create a trace. Should look familiar.

// ...

v i r t u a l vo id opentrace (const char *vcdname) {

// Open a VCD file

m trace = new Ver i latedVcdC ;

m core -> t r ace (m trace , 99);

m trace ->open(vcdname);

}

v i r t u a l vo id c l o s e t r a c e (vo id) {

// Close the already opened VCD file

m trace -> c l o s e ();

de l e t e m trace ;

m trace = NULL;

}

// ...

Verilator template

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Ź Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

23 / 58

Finally, our operations. These haven’t fundamentally changed.

// ...

v i r t u a l vo id eva l (vo id) {

m core -> eva l ();

}

v i r t u a l vo id t i c k (vo id) {

// ...

// This is the same as what we

// introduced in our last

// lesson ...

}

// ...

};

See past lessons, and the current project file(s) for more detail
here.

Main simulation file

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Ź

Main simulation
file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

24 / 58

#inc l ude <Vhelloworld.h> // our top level

#inc l ude "uartsim.h" // A co -simulator

// ...

i n t main(i n t argc , char ** argv) {

Ve r i l a t e d ::commandArgs(argc , argv);

TESTB<Vhel lowor ld > * tb

= new TESTB<Vhel lowor ld >;

UARTSIM * uar t // cosim object

= new UARTSIM();

// ...

f o r (i n t c l o ck s =0;

c l o ck s < 16*32* baudc locks ;

c l o ck s ++) {

tb -> t i c k ();

(* uar t)(tb ->m core -> o ua r t t x);

}

Main simulation file

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Ź

Main simulation
file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

25 / 58

#inc l ude <Vhelloworld.h> // our top level

#inc l ude "uartsim.h" // A co -simulator

// ...

i n t main(i n t argc , char ** argv) {

Ve r i l a t e d ::commandArgs(argc , argv);

TESTB<Vhel lowor ld > * tb

= new TESTB<Vhel lowor ld >;

UARTSIM * uar t // cosim object

= new UARTSIM();

// ...

The secret key to success lies in the UARTSIM co-simulator

What is cosimulation?

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

26 / 58

A cosimulator is a separate simulation

˝ Simulates the hardware components we are connected to
˝ In this case, the serial port
˝ Can use C++ assert() statements liberally

Serial Decoding

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

27 / 58

Our co-simulation will need to decode this serial signal

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

Steps to decode a serial port:

Serial Decoding

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

27 / 58

Our co-simulation will need to decode this serial signal

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

Steps to decode a serial port:

1. Detect the start bit

˝ This determines the timing of everything to follow

Serial Decoding

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

27 / 58

Our co-simulation will need to decode this serial signal

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

Steps to decode a serial port:

1. Detect the start bit

˝ This determines the timing of everything to follow

2. Wait a baud and a half

˝ Centers our sample mid baud-interval

Serial Decoding

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

27 / 58

Our co-simulation will need to decode this serial signal

o uart tx d[0] d[1] d[2] d[3] d[4] d[5] d[6] d[7]

Steps to decode a serial port:

1. Detect the start bit

˝ This determines the timing of everything to follow

2. Wait a baud and a half

˝ Centers our sample mid baud-interval

3. Sample each remaining data bit mid-baud

˝ Known baud rate determines the separation

UART Co-simulator

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

28 / 58

The first step is to make certain the cosimulator and design
share the same baud rate

˝ First, adjust the design

module helloworld (i_clk ,
‘ i f d e f VERILATOR

o_setup ,
‘ e nd i f

o_uart_tx) ;
// . . .

parameter INITIAL_UART_SETUP

= (CLOCK_RATE_HZ/BAUD_RATE) ;
‘ i f d e f VERILATOR

output wire [3 1 : 0] o_setup ;
ass ign o_setup = INITIAL_UART_SETUP ;

‘ e nd i f

UART Co-simulator

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

29 / 58

The first step is to make certain the cosimulator and design
share the same baud rate

˝ First, adjust the design
˝ Then read the value from C++

i n t main(i n t argc , char ** argv) {

// ...

uns igned baudc locks ;

baudc locks = tb ->m core -> o setup ;

uart -> setup (baudc locks);

// ...

}

Now the cosimulator and design share the same baud rate

UART Co-simulator

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

30 / 58

All the co-sim work is done on a clock tick

i n t UARTSIM:: operato r ()(const i n t i t x) {

i f (m rx s ta te == RXIDLE) {

// Detect start bit

i f (! i t x) {

m rx s ta te = RXDATA;

// Wait a baud and a half

m rx baudcounter =m baud counts

+ m baud counts /2-1;

m rx b i t s = 0; // bit counter

m rx data = 0; // a shift reg

}

// continued ...

UART Co-simulator

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Ź Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

31 / 58

// ... continued

} e l s e i f (m rx baudcounter <= 0) {

// Middle of a data bit interval

i f (m rx b i t s >= 8) {

// Last data bit: post the result

m rx s ta te = RXIDLE;

putchar (m rx data);

f f l u s h (s tdout);

} e l s e {

m rx b i t s ++;

m rx data = ((i t x &1)?0 x80:0)

| (m rx data >>1);

} // Restart the baud counter

m rx baudcounter = m baud counts -1;

} e l s e // Wait for next mid -bit interval

m rx baudcounter --;

}

Make Foo

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

32 / 58

When command lines get complicated, I turn to make

˝ A makefile consists of a list of targets, dependencies, and
instructions

t a rge t : dependency f i l e s

Instructions for creating the target

touch ta rge t # Just one example

˝ Now, if any of the dependency files change, make will rebuild
the target

˝ Make will also now rebuild all targets depending upon this one

Make Foo

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

33 / 58

You can set a Makefile variable

TOPMOD := he l l owo r l d

and then reference it later

VERIFIL := $(TOPMOD).v

If we do this right,

˝ Our Makefile logic can be reused

Make Foo

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

34 / 58

Example of re-use

TOPMOD := he l l owo r l d

VLOGFIL:= $(TOPMOD).v # Our Verilog file

VCDFILE:= $(TOPMOD). vcd # Our VCD trace file

SIMPROG:= $(TOPMOD) tb # Simulation executable

SIMFILE:= $(SIMPROG).cpp # Simulation top lvl

Now redefining $(TOPMOD) will change this Makefile from one
purpose/project to another

Make Foo

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

35 / 58

With -Wall, Verilator will fail on a warning

˝ It will leave its build products behind
˝ A second make will finish building the erroneous code
˝ The .DELETE ON ERROR: makefile target prevents this

.DELETE ON ERROR:

Make Foo

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

36 / 58

Verilator will build dependency files for you with -MMD

˝ We can include these into our Makefile with

DEPS := $(wi l dca rd o b j d i r /*.d)

i f n eq ($(DEPS),)

i n c l ude $(DEPS)

end i f

˝ Now, if txuart.v changes, make will call Verilator again
˝ This keeps us from needing to list all the Verilog files in the

Makefile

Make Clean

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

37 / 58

We can create a special “clean” target

˝ To remove all build products

c l ean :

rm - r f o b j d i r / $(TOPMOD) tb

˝ clean isn’t really a file, but a target that should always be
built upon request

.PHONY: c l ean

This will tell make to ignore any file named “clean” that
might be in your directory

Make Clean

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

38 / 58

We can create a special “clean” target

˝ To remove all build products

c l ean :

rm - r f o b j d i r / he l l owo r l d t b

˝ This will fail if we delete our Verilator dependency files
˝ Simple fix:

i f n eq ($(MAKECMDGOALS), c l ean)

i f n eq ($(DEPS),)

i n c l ude $(DEPS)

end i f

e nd i f

Simulation

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Ź Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

39 / 58

Try running the simulation now

% ./ helloworld_tb

Hello , World!

Simulation complete

%

Things to note:

˝ Simulation is slow

– 8,680 clocks required to simulate each character

˝ The VCD file is large (14M)

– This is actually quite small relatively
– Simulations can take up 50GB or more
– Keep an eye on disk space usage

Formal Verification

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Ź

Formal
Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

40 / 58

The entire design needs to be simplified

˝ Split into two separate proofs

– TX UART itself
– The Hello World wrapper

˝ When verifying the Hello World wrapper

– Can’t keep the assumptions of the TX UART!
– If we define TXUART only for txuart.v . . .
– We can create a macro redefining assume
– . . . and turning it into an assert for helloworld.v

‘ i f d e f TXUART

‘ d e f i n e ASSUME assume

‘ e l s e

‘ de f i n e ASSUME as se r t

‘ e nd i f

Formal Verification

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Ź

Formal
Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

41 / 58

The entire design needs to be simplified

˝ Split into two separate proofs
˝ When verifying the Hello World wrapper

– Need to define TXUART now
– Requires adjusting our SymbiYosys script

[s c r i p t]
read ´DTXUART ´formal txuart . v
prep ´top txuart

˝ The ´DTXUART defines the TXUART macro
˝ The rest is the same as before

Verifying txuart

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Ź Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

42 / 58

Some useful properties:

˝ Input requests should remain constant until they are serviced

always @ (posedge i_clk)
i f ((f_past_valid)

&&($past (i_wr))&&($past (o_busy)))
begin

‘ASSUME (i_wr == $past (i_wr)) ;
‘ASSUME (i_data == $past (i_data)) ;

end

Verifying txuart

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Ź Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

43 / 58

Some useful properties:

˝ Baud counter should always be less than CLOCKS_PER_BAUD

always @ (∗)
as se r t (counter < CLOCKS_PER_BAUD) ;

˝ If the baud counter is nonzero, it should be counting down

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (counter) !=0))

as se r t (counter == $past (counter ´ 1 ’b1)) ;

Verifying txuart

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Ź Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

44 / 58

Some useful properties:

˝ If the counter is non-zero, the busy output should be true

always @ (∗)
i f (counter > 0)

as se r t (o_busy) ;

These assertions are all good and nice, but . . .

˝ They do nothing to assure me that this design even works

Formal Contract

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

45 / 58

Any set of formal properties should include a contract

˝ Describes the required black-box behavior
˝ Describes how the core will be seen by the world
˝ Depends primarily on the outputs
˝ Shouldn’t need to change if the underlying implementation

changes

This is in addition to any assertions about local register values

Formal Contract

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

46 / 58

Our contract:

always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

fv_data <= i_data ;
always @ (posedge i_clk)
case (state)
IDLE : as se r t (o_uart_tx) ;
START : as se r t (o_uart_tx == 1 ’b0) ;
BIT_ZERO : as se r t (o_uart_tx == fv_data [0]) ;
BIT_ONE : as se r t (o_uart_tx == fv_data [1]) ;
BIT_TWO : as se r t (o_uart_tx == fv_data [2]) ;
BIT_THREE : as se r t (o_uart_tx == fv_data [3]) ;
BIT_FOUR : as se r t (o_uart_tx == fv_data [4]) ;
BIT_FIVE : as se r t (o_uart_tx == fv_data [5]) ;
BIT_SIX : as se r t (o_uart_tx == fv_data [6]) ;
BIT_SEVEN : as se r t (o_uart_tx == fv_data [7]) ;
de fau l t : as se r t (0) ; // Should neve r be he r e

Running SymbiYosys

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

47 / 58

% sby -f txuart.sby

Running SymbiYosys

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

47 / 58

% sby -f txuart.sby

What happened?

Formal Contract

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

48 / 58

Our contract: Failed Induction! Why?

always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

fv_data <= i_data ;
always @ (posedge i_clk)
case (state)
IDLE : as se r t (o_uart_tx) ;
START : as se r t (o_uart_tx == 1 ’b0) ;
BIT_ZERO : as se r t (o_uart_tx == fv_data [0]) ;
BIT_ONE : as se r t (o_uart_tx == fv_data [1]) ;
BIT_TWO : as se r t (o_uart_tx == fv_data [2]) ;
BIT_THREE : as se r t (o_uart_tx == fv_data [3]) ;
BIT_FOUR : as se r t (o_uart_tx == fv_data [4]) ;
BIT_FIVE : as se r t (o_uart_tx == fv_data [5]) ;
BIT_SIX : as se r t (o_uart_tx == fv_data [6]) ;
BIT_SEVEN : as se r t (o_uart_tx == fv_data [7]) ;
de fau l t : as se r t (0) ; // Should neve r be he r e

Running SymbiYosys

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

49 / 58

Need to look at the trace

Running SymbiYosys

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

49 / 58

Need to look at the trace

Our assertion
failed hereThe problem

starts back here

Why was lcldata set to 003 on start?

˝ It should have been 9’h1ff!

Formal Contract

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

50 / 58

The issue revolves around how k-induction works

˝ During the induction step, . . .
˝ Initial values are constrained by assumptions and assertions

only
˝ If your design isn’t fully constrained, it may start in an

unreachable state

Induction typically requires more assertions to pass

Passing Induction

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

51 / 58

Fixing an induction problem always follows the same steps

˝ Look for something amiss in the first N ´ 1 steps
. . . the steps before the assertion failure

˝ assert() something appropriate to keep it from happening
˝ If the assert() is inappropriate

– Your design will fail at the (second to) last step of a trace
– Don’t be surprised if BMC fails during this process

˝ Repeat until you find a bug, or until your design passes

Let’s apply this to our design

Passing Induction

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Ź Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

52 / 58

lcldata should be 9’h1ff whenever state == IDLE

always @ (∗)
case (state)
IDLE : as se r t (lcl_data == 9 ’ h1ff) ;
de fau l t :
endcase

The rest of the missing assertions are left as an exercise.

˝ Hint: there are ten possible values for state, and only one
assertion shown above.

Exercise #1

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Ź Exercise #1

Hello World

Exercise #2

Hardware!

Conclusion

53 / 58

Your turn!

˝ Modify txuart.v as necessary until it passes formal verification

Hello World

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Ź Hello World

Exercise #2

Hardware!

Conclusion

54 / 58

What properties would be appropriate for helloworld.v?

always @ (∗)
i f ((tx_stb)&&(!tx_busy))
begin

case (tx_index)
4 ’h0 : as se r t (tx_data <= ”H”) ;
4 ’h1 : as se r t (tx_data <= ”e”) ;
4 ’h2 : as se r t (tx_data <= ” l ”) ;
4 ’h3 : as se r t (tx_data <= ” l ”) ;
//
// . . .
endcase

end

We could check that the right letters are sent

Hello World

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Ź Hello World

Exercise #2

Hardware!

Conclusion

55 / 58

What properties would be appropriate for helloworld.v?

always @ (∗)
i f (tx_index != 4 ’h0)

as se r t (tx_stb) ;

We could assert the request is high throughout the message
Can you think of any other properties to check?

Exercise #2

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Ź Exercise #2

Hardware!

Conclusion

56 / 58

Your turn!

˝ Simulate this Hello World
˝ Formally verify the top level

Hardware!

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Ź Hardware!

Conclusion

57 / 58

This is the exercise you’ve been waiting for:

˝ Run Hello World on your hardware!

You’ll need some parameters for your terminal program

˝ Adjust CLOCK_RATE_HZ to match your board
˝ Your terminal should be set to

– 8 data bits
– No parity
– One stop bit
– No hardware flow control
– A baud rate of BAUD_RATE (115.2kb)

I encourage you to look up these terms
˝ You should see a repeating “Hello, World!” pattern

Don’t forget to make sure you connect to the right serial port

Conclusion

Lesson Overview

Serial Protocol

Implementation

Submodules

Top Level

Philosophy

Simulation

Main simulation file

Cosimulation

Make Foo

Formal Verification

Verifying txuart

Formal Contract

Exercise #1

Hello World

Exercise #2

Hardware!

Ź Conclusion

58 / 58

What did we learn this lesson?

˝ How to build a UART transmitter!
˝ How cosimulation works

and how to build a simulated UART receiver

˝ How to make the simulation driver simpler
˝ A little about using Makefile’s with Verilator
˝ What a formal “contract” is
˝ The realities of working with induction

We learned how to do our debugging before touching the
hardware!

	
	Lesson Overview
	Serial Protocol
	State Variable
	Submodules
	Top Level
	Philosophy
	Simulation
	Main simulation file
	What is cosimulation?
	Make Foo
	Formal Verification
	Verifying txuart
	Formal Contract
	Exercise #1
	Hello World
	Exercise #2
	Hardware!
	Conclusion

