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Objectives

˝ State diagrams
˝ Pipeline control structures
˝ Minimal peripherals
˝ Simulating Wishbone
˝ $past() operator
˝ Verifying Wishbone
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Let’s make our LED’s walk on command

˝ Bus requests
˝ State Diagram
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Let’s adjust our LED sequence to require a request

i clk

i request

o busy

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave
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We’ll add state ID’s to this diagram

i clk

i request

o busy

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

state 0 1 2 3 4 5 6 7 8 9 10 11 0

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave
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The key to this design is the idle state

˝ The design waits in state 0 for an i_request

˝ Only responds when it isn’t busy

i n i t i a l state = 0 ;
always @ ( posedge i_clk )
i f ( ( i_request )&&(!o_busy ) )

state <= 4 ’h1 ;
e l s e i f ( state >= 4 ’hB )

state <= 4 ’h0 ;
e l s e i f ( state != 0)

state <= state + 1 ’b1 ;

ass ign o_busy = ( state != 0 ) ;
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˝ States

– Shown as named bubbles
– Moore FSM: states include outputs

This FSM is a Moore FSM

˝ Transitions

– Arrows between states
– May contain transition criteria
– Mealy FSM: transitions include out-

puts
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We can use a case statement for our outputs

always @ ( posedge i_clk )
case ( state )
4 ’h1 : o_led <= 6 ’ b00_0001 ;
4 ’h2 : o_led <= 6 ’ b00_0010 ;
4 ’h3 : o_led <= 6 ’ b00_0100 ;
4 ’h4 : o_led <= 6 ’ b00_1000 ;
4 ’h5 : o_led <= 6 ’ b01_0000 ;
4 ’h6 : o_led <= 6 ’ b10_0000 ;
4 ’h7 : o_led <= 6 ’ b01_0000 ;
// . . .
4 ’ha : o_led <= 6 ’ b00_0010 ;
4 ’hb : o_led <= 6 ’ b00_0001 ;
de fau l t : o_led <= 6 ’ b00_0000 ;
endcase

Or can we? Does this work?
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Several approaches to pipeline logic

1. Apply the logic on every clock

// From the PPŚ I I imp l ementa t i on
always @ ( posedge i_clk )

counter <= counter + INCREMENT ;

https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html
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Several approaches to pipeline logic

1. Apply the logic on every clock
2. Wait for a clock enable (CE) signal

// From the I n t e g e r C lock D i v i d e r
always @ ( posedge i_clk )
i f ( stb ) // t h i s would be the CE s i g n a l
begin

i f ( led_index >= 4 ’ d13 )
led_index <= 0 ;

e l s e

led_index <= led_index + 1 ’b1 ;
end

https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html
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Several approaches to pipeline logic

1. Apply the logic on every clock
2. Wait for a clock enable (CE) signal
3. Move on a request, but only when not busy

// Today ’ s l o g i c : Wait f o r the r e q u e s t
always @ ( posedge i_clk )
i f ( ( i_request )&&(!o_busy ) )

state <= 4 ’h1 ;
e l s e i f ( state >= 4 ’hB )

state <= 4 ’h0 ;
e l s e i f ( state != 0)

state <= state + 1 ’b1 ;

Above: A mix of pipeline and state machine logic

This is fairly common

https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html
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Interface standards simplify plugging things in

A bus interface can be standardized

˝ A master makes requests
A slave responds

˝ Read request

– Contains an address
– Slave responds with a value

˝ Write request

– Contains an address
– Contains a value
– Slave responds with an acknowledgment
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˝ Every bus has a master
˝ A Bus may have many slaves

Slaves are differentiated by their address
˝ All connected via an interconnect
˝ A slave on one bus may be a master on another
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There are many bus standards

AXI Avalon Wishbone

I like Wishbone for its simplicity

˝ Only one request channel
AXI has three, Avalon has two

˝ Only the request channel can stall
˝ Acknowledgements are simple
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I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ A request takes place any time (i_stb)&&(!o_stall)

Just like our (i_request)&&(!o_busy)

˝ The request details are found in i_we, i_addr, and i_data

˝ These wires are don’t care if i_stb isn’t true

http://zipcpu.com/doc/wbspec_b4.pdf
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I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ If i_we, this is a write request
˝ A write request writes i_data to address i_addr
˝ Read requests ignore i_data

http://zipcpu.com/doc/wbspec_b4.pdf


Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

17 / 62

I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ The response is signaled when o_ack is true
˝ If this was a read request, o_data would have the result

http://zipcpu.com/doc/wbspec_b4.pdf
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I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ i_cyc will be true from request to ack
˝ i_stb will never be true unless i_cyc

http://zipcpu.com/doc/wbspec_b4.pdf
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I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ A slave must respond to every request
˝ Multiple requests can be made before the slave responds
˝ This is controlled by the o_stall signal

http://zipcpu.com/doc/wbspec_b4.pdf
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Let’s Wishbone enable our core

˝ We’ll start the LED cycling on a write
˝ Writes will stall if the LED’s are busy
˝ Return our state on a read
˝ We’ll also acknowledge all requests immediately

http://zipcpu.com/zipcpu/2017/05/29/simple-wishbone.html
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˝ We’ll immediately acknowledge any transaction

i n i t i a l o_ack = 1 ’b0 ;
always @ ( posedge i_clk )

o_ack <= ( i_stb )&&(!o_stall ) ;

˝ Stall if we’re busy and another cycle is requested

ass ign o_stall = ( busy)&&(i_we ) ;

˝ Return state upon any read

ass ign o_data = { 28 ’h0 , state } ;
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It helps to be able to communicate with your wishbone slave
during simulation

˝ Makes simulations easier
˝ Transaction scripting makes more sense
˝ Just need to implement two functions

– One to read from the bus

uns igned wb read( uns igned a);

– One to write to the bus

vo id wb wr ite ( uns igned a, uns igned v);

˝ We’ll come back later and create high-throughput versions of
these
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uns igned wb read( uns igned a) {

tb -> i c y c = tb -> i s t b = 1;

tb -> i we = 0;

tb -> i a d d r = a;

// Make the read request

wh i l e ( tb -> o s t a l l )

t i c k ( tb );

t i c k ( tb );

tb -> i s t b = 0;

// Wait for the ACK

wh i l e (! tb ->o ack )

t i c k ( tb );

// Idle the bus , and read the response

tb -> i c y c = 0;

r e tu rn tb -> o data ;

}
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vo id wb wr ite ( uns igned a, uns igned v) {

tb -> i c y c = tb -> i s t b = 1;

tb -> i we = 1;

tb -> i a d d r = a;

tb -> i d a t a = v;

// Make the write request

wh i l e ( tb -> o s t a l l )

t i c k ( tb );

t i c k ( tb );

tb -> i s t b = 0;

// Wait for the acknowledgement

wh i l e (! tb ->o ack )

t i c k ( tb );

// Idle the bus and return

tb -> i c y c = 0;

}
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This makes building the sim easy!

˝ Let’s tell our LED’s to cycle twice

i n t main( i n t argc , char ** argv ) {

// Setup Verilator (same as before)

// Read from the current state

p r i n t f ("Initial state is: 0x%02x\n",

wb read (0));

f o r ( i n t c y c l e =0; cyc le <2; c y c l e ++) {

// Wait five clocks

f o r ( i n t i =0; i <5; i ++)

t i c k ();

// Start the LEDs cycling

wb write (0,0);

t i c k ();

// ... (next page)
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This makes building the sim easy!

˝ Here’s the other half

// ... (last page)

wh i l e (( s t a t e = wb read (0))!=0) {

i f (( s t a t e != l a s t s t a t e )

||( tb -> o l ed != l a s t l e d )) {

p r i n t f (// something useful

);

} t i c k ();

l a s t s t a t e = s t a t e ;

l a s t l e d = tb -> o l ed ;

}

The full example code is available on line

http://zipcpu.com/tutorial/ex-04-reqwalker.tgz
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% verilator --trace -Wall -cc reqwalker.v

%Warning -UNUSED: reqwalker.v:37:

Signal is not used: i_cyc

%Warning -UNUSED: reqwalker.v:38:

Signal is not used: i_addr

%Warning -UNUSED: reqwalker.v:39:

Signal is not used: i_data

%Error: Exiting due to 3 warning(s)

%Error: Command Failed /usr/bin/verilator_bin

--trace -Wall -cc reqwalker.v

%

What happened?
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What happened?

˝ The -Wall flag to Verilator looks for all kinds things you
might not have meant

˝ It turns warnings into errors
˝ It found logic we weren’t using: i_cyc, i_addr, and i_data

– These are standard bus interface wires
– I often include them, even if not used, to keep the

interface standardized

˝ So how do get our design to work?
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Getting Verilator to ignore unused logic

˝ Use the // Verilator lint off UNUSED command

// V e r i l a t o r l i n t o f f UNUSED
wire unused ;
ass ign unused = &{ 1 ’b0 , i_cyc , i_addr ,

i_data } ;
// V e r i l a t o r l i n t o n UNUSED

˝ Verilator will now no longer check if unused is used or not
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Build and run the demo

˝ Examine the trace
˝ Examine the output

Does it work like you expected?
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Look at the trace. Can you explain this?

Our inputs aren’t clock synchronous!

˝ Normally, all logic changes on the posedge of i_clk
˝ i_cyc, i_stb, i_we are changing before the clock
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This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

vo id t i c k ( vo id ) {

t i c kcount ++;

tb -> eva l (); // Adjusted inputs are

i f ( t f p ) // recorded here

t fp ->dump( t i c kcount * 10 - 2);

tb -> i c l k = 1;// <--- posedge i_clk

tb -> eva l (); // takes place here!

i f ( t f p )

t fp ->dump( t i c kcount * 10);

// ...



Trace bias

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

32 / 62

This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

vo id t i c k ( vo id ) {

t i c kcount ++;

tb -> eva l (); // Adjusted inputs are

i f ( t f p ) // recorded here

t fp ->dump( t i c kcount * 10 - 2);

tb -> i c l k = 1;// <--- posedge i_clk

tb -> eva l (); // takes place here!

i f ( t f p )

t fp ->dump( t i c kcount * 10);

// ...
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This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

vo id t i c k ( vo id ) {

t i c kcount ++;

tb -> eva l (); // Adjusted inputs are

i f ( t f p ) // recorded here

t fp ->dump( t i c kcount * 10 - 2);

˝ The tfp->dump(tickcount*10 -2) dumps the state of
everything just before the positive edge of the clock

˝ This captures the changes made to i_cyc, i_stb, i_we, etc.,
in wb read() and wb write()

˝ The trace accurately reflected these changes taking place
before the clock edge
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This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

˝ Had we done otherwise, combinatorial logic wouldn’t have
settled before posedge i_clk

˝ Worse, the trace wouldn’t make any sense
˝ This way, things work. Logic matches the trace.

It just looks strange.
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Is this an output you expected?

% ./ reqwalker

Initial state is: 0x00

10: State # 4 --O---

12: State # 6 ----O-

14: State # 8 ----O-

16: State #10 --O---

27: State # 4 --O---

29: State # 6 ----O-

31: State # 8 ----O-

33: State #10 --O---

%

Let’s look at the trace again!
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Look at the trace. Can you explain this?

˝ Why are we getting two acks in a row?
˝ We never created two adjacent requests!
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Look at the trace. Can you explain this?

˝ The stall line depends upon i_we

˝ Without a call to tb->eval(), it won’t update!
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Remember how we defined o_stall?

ass ign o_stall = ( busy)&&(i_we ) ;

˝ wb write() and wb read() both adjust i_we
˝ . . . without calling Verilator to give it a chance to update

o_stall before referencing it!
˝ o_stall is still updated before the clock, but not until after

we used it in wb write() and wb read()

˝ We can fix this by calling tb->eval() to get Verilator to
adjust o_stall
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Need to call tb->eval()

˝ o_stall depends upon a Verilator input, i_we

– Fixing this requires an extra call to eval()

– I don’t normally need to do this

˝ Both wb read() and wb write() need to be updated
˝ Example update to wb read():

uns igned wb read( uns igned a) {

tb -> i c y c = tb -> i s t b = 1;

tb -> i we = 0; tb -> eva l ();

tb -> i a d d r = a;

// Make the request

// ...

}
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Rebuild and run again. Is this better?

% ./ reqwalker

Initial state is: 0x00

9: State # 3 -O----

11: State # 5 ---O--

13: State # 7 -----O

15: State # 9 ---O--

17: State #11 -O----

27: State # 3 -O----

29: State # 5 ---O--

31: State # 7 -----O

33: State # 9 ---O--

35: State #11 -O----

%

But, why are we reading every other trace?
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Look at the ACK’s

˝ Pattern: i_stb, o_ack repeats
˝ Lesson: The clock ticks twice per read
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Here’s the full and final simulation

Here you can see both LED walks, as expected
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Pipeline logic needs to reason in passing time

˝ $past(X) returns the value of X one clock ago
˝ $past(X,N) returns the value of X N clocks ago
˝ Both require a clock

always @ ( posedge i_clk )
i f ( $past (C ) )

as se r t (X == Y ) ;

˝ It’s illegal to use $past(X) without a clock

// Thi s i s an e r r o r : the r e ’ s no c l o c k
always @ (∗ )
i f ( $past (C ) )

as se r t (X ) ;
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$past(X) has one disadvantage

˝ On the initial clock, $past(X) is undefined

– Assertions referencing $past(X) will always fail
– Assumptions referencing $past(X) will always succeed

˝ I guard against this with f_past_valid

reg f_past_valid ;
i n i t i a l f_past_valid = 0 ;
always @ ( posedge i_clk )

f_past_valid = 1 ’b1 ;

˝ To use, place f_past_valid in an if condition

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( some_condition ) ) )

as se r t ( this_must_then_be_true ) ;



Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

45 / 62

What properties might we use?

˝ assume properties of the inputs
˝ assert properties of local states and outputs
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What properties might we use?

i clk

i stb

busy

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

state 0 1 2 3 4 5 6 7 8 9 10 11 0

The goal waveform diagram should give you an idea
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What properties might we use?

˝ For our state machine

always @ (∗ )
case ( state )
4 ’h0 : as se r t ( o_led == 0 ) ;
4 ’h1 : as se r t ( o_led == 6 ’h1 ) ;
4 ’h2 : as se r t ( o_led == 6 ’h2 ) ;
//
4 ’hb : as se r t ( o_led == 6 ’h1 ) ;
endcase

always @ (∗ )
as se r t ( busy != ( state == 0 ) ) ;

always @ (∗ )
as se r t ( state <= 4 ’hb ) ;
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What properties might we use?

˝ For our state machine, using $past(X)

˝ An accepted write should start our cycle

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( i_stb ) )

&&($past ( i_we ))&&(! $past ( o_stall ) ) )
begin

as se r t ( state == 1 ) ;
as se r t ( busy ) ;

end
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What properties might we use?

˝ During the cycle, the state should increment

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( busy ) )

&&($past ( state < 4 ’hb ) ) )
as se r t ( state == $past ( state )+1) ;
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What properties might we use?

˝ For our bus interface?

// Bus shou l d be i d l e i n i t i a l l y
i n i t i a l assume ( ! i_cyc ) ;

// i s t b i s on l y a l l owed i f i c y c
always @ (∗ )
i f ( ! i_cyc )

assume ( ! i_stb ) ;

// When i c y c goes high , so too does i s t b
always @ ( posedge i_clk )
i f ( ( ! $past ( i_cyc ))&&(i_cyc ) )

assume ( i_stb ) ;
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What properties might we use?

˝ For our bus interface?

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( i_stb ) )

&&($past ( o_stall ) ) )
begin

// Request i s s t a l l e d
// I t shou ldn ’ t change
assume ( i_stb ) ;
assume ( i_we == $past ( i_we ) ) ;
assume ( i_addr == $past ( i_addr ) ) ;
i f ( i_we )

assume ( i_data == $past ( i_data ) ) ;
end
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What properties might we use?

˝ For our bus interface?

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( i_stb ) )

&&(!$past ( o_stall ) ) )
as se r t ( o_ack ) ;
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You can also use $past with cover

always @ ( posedge i_clk )
i f ( f_past_valid )

cover ( ( ! busy)&&($past ( busy ) ) ) ;
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Constantly editing our SymbiYosys file is getting old

˝ Running cover, then
˝ Editing our script, then
˝ Running induction, then . . .
˝ Can we do this with one file?

Yes, using SymbiYosys tasks!

˝ SymbiYosys allows us to define multiple different scripts
˝ . . . all in the same file
˝ It does this using tasks
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Let’s define two tasks

˝ cvr to run cover
˝ prf to run induction

SymbiYosys lines prefixed by a task name are specific to that task

[ tasks ]
prf

cvr

[ opt ions ]
cvr : mode cover

prf : mode prove

The full reqwalker.sby file is with the course handouts
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We can now run a named task

% sby -f reqwalker.sby prf

. . . or all tasks in sequence

% sby -f reqwalker.sby
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I use this often with the ZipCPU

˝ Using the yosys command hierarchy I can describe multiple
configurations to verify

– With/Without the pipeline
– With/Without the instruction cache
– With/Without the data cache

. . . , etc.

˝ SymbiYosys tasks are very useful!



Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Ź Exercise

Bonus

Conclusion

58 / 62

Your turn! Formally verify this design

˝ Build and create a SymbiYosys script
˝ Apply to the example design
˝ Adjust the design until it passes

– Did you find any bugs?
– Why weren’t these bugs caught in simulation?
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Your turn to design

˝ Add the integer clock divider to this design

(Otherwise you’d never see the LED’s change on real
hardware)

˝ Adjust both simulator and formal properties
˝ Create a simulation trace
˝ Create a cover trace

Do they match?
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Bonus: If you have hardware with more than one LED . . .

˝ Adjust the number of LED’s to match your hardware
˝ Create an i_btn input and connect it to a button
˝ Replace the i_stb input with the logic below

reg stb ;
i n i t i a l stb = 0 ;
always @ ( posedge i_clk )
i f ( i_btn )

stb <= 1 ’b1 ;
e l s e i f ( ! busy )

stb <= 1 ’b0 ;
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Bonus: If you have hardware with more than one LED

˝ Adjust the number of LED’s to match your hardware
˝ Create an i_btn input and connect it to a button
˝ Replace the i_stb input with the given logic
˝ Tie i_we high
˝ Ignore o_stall, i_cyc, etc.

You’ll need to adjust the formal properties
You should still be able to simulate it

˝ Simulate this updated design
˝ Implement it on your hardware

– Did it do what you expected? Why or why not?
– Does the LED walk back and forth when you press the

button?
It should!
It might not work reliably . . . yet

http://zipcpu.com/blog/2017/08/02/debounce-teaser.html


Conclusion

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Ź Conclusion

62 / 62

What did we learn this lesson?

˝ Pipeline handshaking, i_request && !o_busy

˝ State transition diagrams
˝ Definition of a bus
˝ Logic involved in processing the wishbone bus
˝ How to make a wishbone slave
˝ How to make wishbone bus calls from your Verilator C++

driver
˝ How to ignore unused logic in Verilator
˝ Verilator requires a call to eval() for combinatorial logic to

settle
˝ The $past operator in formal verification
˝ SymbiYosys tasks
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