
Gisselquist
Technology, LLC

4. Pipeline Control

Daniel E. Gisselquist, Ph.D.

Lesson Overview

Ź Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

2 / 62

Objectives

˝ State diagrams
˝ Pipeline control structures
˝ Minimal peripherals
˝ Simulating Wishbone
˝ $past() operator
˝ Verifying Wishbone

LED Walker

Lesson Overview

Ź LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

3 / 62

Let’s make our LED’s walk on command

˝ Bus requests
˝ State Diagram

Goal

Lesson Overview

Ź LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

4 / 62

Let’s adjust our LED sequence to require a request

i clk

i request

o busy

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave

Goal

Lesson Overview

Ź LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

5 / 62

We’ll add state ID’s to this diagram

i clk

i request

o busy

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

state 0 1 2 3 4 5 6 7 8 9 10 11 0

˝ Our goal will be to create a design with these outputs
˝ If successful, you’ll see this in GTKwave

State Transition

Lesson Overview

Ź LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

6 / 62

The key to this design is the idle state

˝ The design waits in state 0 for an i_request

˝ Only responds when it isn’t busy

i n i t i a l state = 0 ;
always @ (posedge i_clk)
i f ((i_request)&&(!o_busy))

state <= 4 ’h1 ;
e l s e i f (state >= 4 ’hB)

state <= 4 ’h0 ;
e l s e i f (state != 0)

state <= state + 1 ’b1 ;

ass ign o_busy = (state != 0) ;

State Transition Diagrams

Lesson Overview

LED Walker

Ź Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

7 / 62

˝ States

– Shown as named bubbles
– Moore FSM: states include outputs

This FSM is a Moore FSM

˝ Transitions

– Arrows between states
– May contain transition criteria
– Mealy FSM: transitions include out-

puts

Outputs

Lesson Overview

LED Walker

Ź Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

8 / 62

We can use a case statement for our outputs

always @ (posedge i_clk)
case (state)
4 ’h1 : o_led <= 6 ’ b00_0001 ;
4 ’h2 : o_led <= 6 ’ b00_0010 ;
4 ’h3 : o_led <= 6 ’ b00_0100 ;
4 ’h4 : o_led <= 6 ’ b00_1000 ;
4 ’h5 : o_led <= 6 ’ b01_0000 ;
4 ’h6 : o_led <= 6 ’ b10_0000 ;
4 ’h7 : o_led <= 6 ’ b01_0000 ;
// . . .
4 ’ha : o_led <= 6 ’ b00_0010 ;
4 ’hb : o_led <= 6 ’ b00_0001 ;
de fau l t : o_led <= 6 ’ b00_0000 ;
endcase

Or can we? Does this work?

Pipeline Strategies

Lesson Overview

LED Walker

Diagrams

Ź Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

9 / 62

Several approaches to pipeline logic

1. Apply the logic on every clock

// From the PPŚ I I imp l ementa t i on
always @ (posedge i_clk)

counter <= counter + INCREMENT ;

https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html

Pipeline Strategies

Lesson Overview

LED Walker

Diagrams

Ź Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

10 / 62

Several approaches to pipeline logic

1. Apply the logic on every clock
2. Wait for a clock enable (CE) signal

// From the I n t e g e r C lock D i v i d e r
always @ (posedge i_clk)
i f (stb) // t h i s would be the CE s i g n a l
begin

i f (led_index >= 4 ’ d13)
led_index <= 0 ;

e l s e

led_index <= led_index + 1 ’b1 ;
end

https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html

Pipeline Strategies

Lesson Overview

LED Walker

Diagrams

Ź Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

11 / 62

Several approaches to pipeline logic

1. Apply the logic on every clock
2. Wait for a clock enable (CE) signal
3. Move on a request, but only when not busy

// Today ’ s l o g i c : Wait f o r the r e q u e s t
always @ (posedge i_clk)
i f ((i_request)&&(!o_busy))

state <= 4 ’h1 ;
e l s e i f (state >= 4 ’hB)

state <= 4 ’h0 ;
e l s e i f (state != 0)

state <= state + 1 ’b1 ;

Above: A mix of pipeline and state machine logic

This is fairly common

https://zipcpu.com/blog/2017/08/14/strategies-for-pipelining.html

Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Ź Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

12 / 62

Interface standards simplify plugging things in

A bus interface can be standardized

˝ A master makes requests
A slave responds

˝ Read request

– Contains an address
– Slave responds with a value

˝ Write request

– Contains an address
– Contains a value
– Slave responds with an acknowledgment

Bus Topology

Lesson Overview

LED Walker

Diagrams

Pipeline

Ź Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

13 / 62

˝ Every bus has a master
˝ A Bus may have many slaves

Slaves are differentiated by their address
˝ All connected via an interconnect
˝ A slave on one bus may be a master on another

Many Bus Standards

Lesson Overview

LED Walker

Diagrams

Pipeline

Ź Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

14 / 62

There are many bus standards

AXI Avalon Wishbone

I like Wishbone for its simplicity

˝ Only one request channel
AXI has three, Avalon has two

˝ Only the request channel can stall
˝ Acknowledgements are simple

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

15 / 62

I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ A request takes place any time (i_stb)&&(!o_stall)

Just like our (i_request)&&(!o_busy)

˝ The request details are found in i_we, i_addr, and i_data

˝ These wires are don’t care if i_stb isn’t true

http://zipcpu.com/doc/wbspec_b4.pdf

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

16 / 62

I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ If i_we, this is a write request
˝ A write request writes i_data to address i_addr
˝ Read requests ignore i_data

http://zipcpu.com/doc/wbspec_b4.pdf

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

17 / 62

I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ The response is signaled when o_ack is true
˝ If this was a read request, o_data would have the result

http://zipcpu.com/doc/wbspec_b4.pdf

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

18 / 62

I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ i_cyc will be true from request to ack
˝ i_stb will never be true unless i_cyc

http://zipcpu.com/doc/wbspec_b4.pdf

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

19 / 62

I use Wishbone B4, pipelined mode exclusively

i clk

i cyc

i stb

i we

i addr 0

i data S

o stall

o ack

o data

˝ A slave must respond to every request
˝ Multiple requests can be made before the slave responds
˝ This is controlled by the o_stall signal

http://zipcpu.com/doc/wbspec_b4.pdf

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

20 / 62

Let’s Wishbone enable our core

˝ We’ll start the LED cycling on a write
˝ Writes will stall if the LED’s are busy
˝ Return our state on a read
˝ We’ll also acknowledge all requests immediately

http://zipcpu.com/zipcpu/2017/05/29/simple-wishbone.html

Wishbone Bus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Ź Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

21 / 62

˝ We’ll immediately acknowledge any transaction

i n i t i a l o_ack = 1 ’b0 ;
always @ (posedge i_clk)

o_ack <= (i_stb)&&(!o_stall) ;

˝ Stall if we’re busy and another cycle is requested

ass ign o_stall = (busy)&&(i_we) ;

˝ Return state upon any read

ass ign o_data = { 28 ’h0 , state } ;

Simulation

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Ź Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

22 / 62

It helps to be able to communicate with your wishbone slave
during simulation

˝ Makes simulations easier
˝ Transaction scripting makes more sense
˝ Just need to implement two functions

– One to read from the bus

uns igned wb read(uns igned a);

– One to write to the bus

vo id wb wr ite (uns igned a, uns igned v);

˝ We’ll come back later and create high-throughput versions of
these

Sim Read

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Ź Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

23 / 62

uns igned wb read(uns igned a) {

tb -> i c y c = tb -> i s t b = 1;

tb -> i we = 0;

tb -> i a d d r = a;

// Make the read request

wh i l e (tb -> o s t a l l)

t i c k (tb);

t i c k (tb);

tb -> i s t b = 0;

// Wait for the ACK

wh i l e (! tb ->o ack)

t i c k (tb);

// Idle the bus , and read the response

tb -> i c y c = 0;

r e tu rn tb -> o data ;

}

Sim Write

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Ź Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

24 / 62

vo id wb wr ite (uns igned a, uns igned v) {

tb -> i c y c = tb -> i s t b = 1;

tb -> i we = 1;

tb -> i a d d r = a;

tb -> i d a t a = v;

// Make the write request

wh i l e (tb -> o s t a l l)

t i c k (tb);

t i c k (tb);

tb -> i s t b = 0;

// Wait for the acknowledgement

wh i l e (! tb ->o ack)

t i c k (tb);

// Idle the bus and return

tb -> i c y c = 0;

}

Run Twice

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Ź Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

25 / 62

This makes building the sim easy!

˝ Let’s tell our LED’s to cycle twice

i n t main(i n t argc , char ** argv) {

// Setup Verilator (same as before)

// Read from the current state

p r i n t f ("Initial state is: 0x%02x\n",

wb read (0));

f o r (i n t c y c l e =0; cyc le <2; c y c l e ++) {

// Wait five clocks

f o r (i n t i =0; i <5; i ++)

t i c k ();

// Start the LEDs cycling

wb write (0,0);

t i c k ();

// ... (next page)

Display State

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Ź Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

26 / 62

This makes building the sim easy!

˝ Here’s the other half

// ... (last page)

wh i l e ((s t a t e = wb read (0))!=0) {

i f ((s t a t e != l a s t s t a t e)

||(tb -> o l ed != l a s t l e d)) {

p r i n t f (// something useful

);

} t i c k ();

l a s t s t a t e = s t a t e ;

l a s t l e d = tb -> o l ed ;

}

The full example code is available on line

http://zipcpu.com/tutorial/ex-04-reqwalker.tgz

Unused Logic

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Ź Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

27 / 62

% verilator --trace -Wall -cc reqwalker.v

%Warning -UNUSED: reqwalker.v:37:

Signal is not used: i_cyc

%Warning -UNUSED: reqwalker.v:38:

Signal is not used: i_addr

%Warning -UNUSED: reqwalker.v:39:

Signal is not used: i_data

%Error: Exiting due to 3 warning(s)

%Error: Command Failed /usr/bin/verilator_bin

--trace -Wall -cc reqwalker.v

%

What happened?

Unused Logic

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Ź Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

28 / 62

What happened?

˝ The -Wall flag to Verilator looks for all kinds things you
might not have meant

˝ It turns warnings into errors
˝ It found logic we weren’t using: i_cyc, i_addr, and i_data

– These are standard bus interface wires
– I often include them, even if not used, to keep the

interface standardized

˝ So how do get our design to work?

Unused Logic

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Ź Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

29 / 62

Getting Verilator to ignore unused logic

˝ Use the // Verilator lint off UNUSED command

// V e r i l a t o r l i n t o f f UNUSED
wire unused ;
ass ign unused = &{ 1 ’b0 , i_cyc , i_addr ,

i_data } ;
// V e r i l a t o r l i n t o n UNUSED

˝ Verilator will now no longer check if unused is used or not

Sim Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

30 / 62

Build and run the demo

˝ Examine the trace
˝ Examine the output

Does it work like you expected?

Trace bias

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

31 / 62

Look at the trace. Can you explain this?

Our inputs aren’t clock synchronous!

˝ Normally, all logic changes on the posedge of i_clk
˝ i_cyc, i_stb, i_we are changing before the clock

Trace bias

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

32 / 62

This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

vo id t i c k (vo id) {

t i c kcount ++;

tb -> eva l (); // Adjusted inputs are

i f (t f p) // recorded here

t fp ->dump(t i c kcount * 10 - 2);

tb -> i c l k = 1;// <--- posedge i_clk

tb -> eva l (); // takes place here!

i f (t f p)

t fp ->dump(t i c kcount * 10);

// ...

Trace bias

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

32 / 62

This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

vo id t i c k (vo id) {

t i c kcount ++;

tb -> eva l (); // Adjusted inputs are

i f (t f p) // recorded here

t fp ->dump(t i c kcount * 10 - 2);

tb -> i c l k = 1;// <--- posedge i_clk

tb -> eva l (); // takes place here!

i f (t f p)

t fp ->dump(t i c kcount * 10);

// ...

Trace bias

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

33 / 62

This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

vo id t i c k (vo id) {

t i c kcount ++;

tb -> eva l (); // Adjusted inputs are

i f (t f p) // recorded here

t fp ->dump(t i c kcount * 10 - 2);

˝ The tfp->dump(tickcount*10 -2) dumps the state of
everything just before the positive edge of the clock

˝ This captures the changes made to i_cyc, i_stb, i_we, etc.,
in wb read() and wb write()

˝ The trace accurately reflected these changes taking place
before the clock edge

Trace bias

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

34 / 62

This is a consequence of our trace() function

˝ We set our input values, i_cyc, etc before calling tick()

˝ Had we done otherwise, combinatorial logic wouldn’t have
settled before posedge i_clk

˝ Worse, the trace wouldn’t make any sense
˝ This way, things work. Logic matches the trace.

It just looks strange.

Simulation output

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

35 / 62

Is this an output you expected?

% ./ reqwalker

Initial state is: 0x00

10: State # 4 --O---

12: State # 6 ----O-

14: State # 8 ----O-

16: State #10 --O---

27: State # 4 --O---

29: State # 6 ----O-

31: State # 8 ----O-

33: State #10 --O---

%

Let’s look at the trace again!

Double ACKs

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

36 / 62

Look at the trace. Can you explain this?

˝ Why are we getting two acks in a row?
˝ We never created two adjacent requests!

Double ACKs

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

37 / 62

Look at the trace. Can you explain this?

˝ The stall line depends upon i_we

˝ Without a call to tb->eval(), it won’t update!

Double ACKs

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

38 / 62

Remember how we defined o_stall?

ass ign o_stall = (busy)&&(i_we) ;

˝ wb write() and wb read() both adjust i_we
˝ . . . without calling Verilator to give it a chance to update

o_stall before referencing it!
˝ o_stall is still updated before the clock, but not until after

we used it in wb write() and wb read()

˝ We can fix this by calling tb->eval() to get Verilator to
adjust o_stall

Double ACKs

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

39 / 62

Need to call tb->eval()

˝ o_stall depends upon a Verilator input, i_we

– Fixing this requires an extra call to eval()

– I don’t normally need to do this

˝ Both wb read() and wb write() need to be updated
˝ Example update to wb read():

uns igned wb read(uns igned a) {

tb -> i c y c = tb -> i s t b = 1;

tb -> i we = 0; tb -> eva l ();

tb -> i a d d r = a;

// Make the request

// ...

}

Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

40 / 62

Rebuild and run again. Is this better?

% ./ reqwalker

Initial state is: 0x00

9: State # 3 -O----

11: State # 5 ---O--

13: State # 7 -----O

15: State # 9 ---O--

17: State #11 -O----

27: State # 3 -O----

29: State # 5 ---O--

31: State # 7 -----O

33: State # 9 ---O--

35: State #11 -O----

%

But, why are we reading every other trace?

Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

41 / 62

Look at the ACK’s

˝ Pattern: i_stb, o_ack repeats
˝ Lesson: The clock ticks twice per read

Sim Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Ź Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

42 / 62

Here’s the full and final simulation

Here you can see both LED walks, as expected

Formal past operator

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Ź Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

43 / 62

Pipeline logic needs to reason in passing time

˝ $past(X) returns the value of X one clock ago
˝ $past(X,N) returns the value of X N clocks ago
˝ Both require a clock

always @ (posedge i_clk)
i f ($past (C))

as se r t (X == Y) ;

˝ It’s illegal to use $past(X) without a clock

// Thi s i s an e r r o r : the r e ’ s no c l o c k
always @ (∗)
i f ($past (C))

as se r t (X) ;

Formal past operator

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Ź Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

44 / 62

$past(X) has one disadvantage

˝ On the initial clock, $past(X) is undefined

– Assertions referencing $past(X) will always fail
– Assumptions referencing $past(X) will always succeed

˝ I guard against this with f_past_valid

reg f_past_valid ;
i n i t i a l f_past_valid = 0 ;
always @ (posedge i_clk)

f_past_valid = 1 ’b1 ;

˝ To use, place f_past_valid in an if condition

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (some_condition)))

as se r t (this_must_then_be_true) ;

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

45 / 62

What properties might we use?

˝ assume properties of the inputs
˝ assert properties of local states and outputs

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

46 / 62

What properties might we use?

i clk

i stb

busy

o led[0]

o led[1]

o led[2]

o led[3]

o led[4]

o led[5]

state 0 1 2 3 4 5 6 7 8 9 10 11 0

The goal waveform diagram should give you an idea

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

47 / 62

What properties might we use?

˝ For our state machine

always @ (∗)
case (state)
4 ’h0 : as se r t (o_led == 0) ;
4 ’h1 : as se r t (o_led == 6 ’h1) ;
4 ’h2 : as se r t (o_led == 6 ’h2) ;
//
4 ’hb : as se r t (o_led == 6 ’h1) ;
endcase

always @ (∗)
as se r t (busy != (state == 0)) ;

always @ (∗)
as se r t (state <= 4 ’hb) ;

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

48 / 62

What properties might we use?

˝ For our state machine, using $past(X)

˝ An accepted write should start our cycle

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (i_stb))

&&($past (i_we))&&(! $past (o_stall)))
begin

as se r t (state == 1) ;
as se r t (busy) ;

end

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

49 / 62

What properties might we use?

˝ During the cycle, the state should increment

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (busy))

&&($past (state < 4 ’hb)))
as se r t (state == $past (state)+1) ;

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

50 / 62

What properties might we use?

˝ For our bus interface?

// Bus shou l d be i d l e i n i t i a l l y
i n i t i a l assume (! i_cyc) ;

// i s t b i s on l y a l l owed i f i c y c
always @ (∗)
i f (! i_cyc)

assume (! i_stb) ;

// When i c y c goes high , so too does i s t b
always @ (posedge i_clk)
i f ((! $past (i_cyc))&&(i_cyc))

assume (i_stb) ;

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

51 / 62

What properties might we use?

˝ For our bus interface?

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (i_stb))

&&($past (o_stall)))
begin

// Request i s s t a l l e d
// I t shou ldn ’ t change
assume (i_stb) ;
assume (i_we == $past (i_we)) ;
assume (i_addr == $past (i_addr)) ;
i f (i_we)

assume (i_data == $past (i_data)) ;
end

Formal Verification

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

52 / 62

What properties might we use?

˝ For our bus interface?

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (i_stb))

&&(!$past (o_stall)))
as se r t (o_ack) ;

Cover Property

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Ź

Formal
Verification

SymbiYosys Tasks

Exercise

Bonus

Conclusion

53 / 62

You can also use $past with cover

always @ (posedge i_clk)
i f (f_past_valid)

cover ((! busy)&&($past (busy))) ;

SymbiYosys Tasks

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

Ź

SymbiYosys
Tasks

Exercise

Bonus

Conclusion

54 / 62

Constantly editing our SymbiYosys file is getting old

˝ Running cover, then
˝ Editing our script, then
˝ Running induction, then . . .
˝ Can we do this with one file?

Yes, using SymbiYosys tasks!

˝ SymbiYosys allows us to define multiple different scripts
˝ . . . all in the same file
˝ It does this using tasks

SymbiYosys Tasks

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

Ź

SymbiYosys
Tasks

Exercise

Bonus

Conclusion

55 / 62

Let’s define two tasks

˝ cvr to run cover
˝ prf to run induction

SymbiYosys lines prefixed by a task name are specific to that task

[tasks]
prf

cvr

[opt ions]
cvr : mode cover

prf : mode prove

The full reqwalker.sby file is with the course handouts

SymbiYosys Tasks

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

Ź

SymbiYosys
Tasks

Exercise

Bonus

Conclusion

56 / 62

We can now run a named task

% sby -f reqwalker.sby prf

. . . or all tasks in sequence

% sby -f reqwalker.sby

SymbiYosys Tasks

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

Ź

SymbiYosys
Tasks

Exercise

Bonus

Conclusion

57 / 62

I use this often with the ZipCPU

˝ Using the yosys command hierarchy I can describe multiple
configurations to verify

– With/Without the pipeline
– With/Without the instruction cache
– With/Without the data cache

. . . , etc.

˝ SymbiYosys tasks are very useful!

Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Ź Exercise

Bonus

Conclusion

58 / 62

Your turn! Formally verify this design

˝ Build and create a SymbiYosys script
˝ Apply to the example design
˝ Adjust the design until it passes

– Did you find any bugs?
– Why weren’t these bugs caught in simulation?

Exercise

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Ź Exercise

Bonus

Conclusion

59 / 62

Your turn to design

˝ Add the integer clock divider to this design

(Otherwise you’d never see the LED’s change on real
hardware)

˝ Adjust both simulator and formal properties
˝ Create a simulation trace
˝ Create a cover trace

Do they match?

Bonus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Ź Bonus

Conclusion

60 / 62

Bonus: If you have hardware with more than one LED . . .

˝ Adjust the number of LED’s to match your hardware
˝ Create an i_btn input and connect it to a button
˝ Replace the i_stb input with the logic below

reg stb ;
i n i t i a l stb = 0 ;
always @ (posedge i_clk)
i f (i_btn)

stb <= 1 ’b1 ;
e l s e i f (! busy)

stb <= 1 ’b0 ;

Bonus

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Ź Bonus

Conclusion

61 / 62

Bonus: If you have hardware with more than one LED

˝ Adjust the number of LED’s to match your hardware
˝ Create an i_btn input and connect it to a button
˝ Replace the i_stb input with the given logic
˝ Tie i_we high
˝ Ignore o_stall, i_cyc, etc.

You’ll need to adjust the formal properties
You should still be able to simulate it

˝ Simulate this updated design
˝ Implement it on your hardware

– Did it do what you expected? Why or why not?
– Does the LED walk back and forth when you press the

button?
It should!
It might not work reliably . . . yet

http://zipcpu.com/blog/2017/08/02/debounce-teaser.html

Conclusion

Lesson Overview

LED Walker

Diagrams

Pipeline

Bus

Wishbone Bus

Simulation

Unused Logic

Sim Exercise

Past Operator

Formal Verification

SymbiYosys Tasks

Exercise

Bonus

Ź Conclusion

62 / 62

What did we learn this lesson?

˝ Pipeline handshaking, i_request && !o_busy

˝ State transition diagrams
˝ Definition of a bus
˝ Logic involved in processing the wishbone bus
˝ How to make a wishbone slave
˝ How to make wishbone bus calls from your Verilator C++

driver
˝ How to ignore unused logic in Verilator
˝ Verilator requires a call to eval() for combinatorial logic to

settle
˝ The $past operator in formal verification
˝ SymbiYosys tasks

	
	Lesson Overview
	LED Walker
	State Transition Diagrams
	Pipeline Strategies
	Bus
	Wishbone Bus
	Simulation
	Unused Logic
	Sim Exercise
	Formal past operator
	Formal Verification
	SymbiYosys Tasks
	Exercise
	Bonus
	Conclusion

