2. Registers

GissequiSt Daniel E. Gisselquist, Ph.D.

Technology, LLC

—__JW._

-I Lesson Overview

= Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

o What is a register (reg)?
o How do things change with time?
o Discover the system clock

Objectives

o Learn how to create combinatorial logic with registers
o Learn to create clocked (synchronous) logic

o Understand that registers can “remember” things

o Understand where your System Clock comes from

o Timing Checks, and why they are important

2 /37

-I- Registers

Lesson Overview
= Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

Why use registers?

o Wires have no memory
o Only registers can hold state (data)

Two basic types, both set with an always

1. Combinatorial: Like wires

always @(x)
A = B;

This form can be easier to read when the logic becomes
complex
2. Synchronous: Only changes values on a clock

always @(posedge i_clk)
A <= B;

3 /37

-I- Combinatorial Regs

Lesson Overview
Registers

= Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback

Blinky

Broken Blinky
Verilator
Parameters

Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

Nl

always @ ()
A = 9'h87;

Registers can only be assigned in always blocks.
Always blocks may consist of one statement, or
Many statements between a begin and end pair

always @(x*)

begin
o_led = A © i_sw:
o_led = o_led + 7;
if (i_reset)
o_led = 0;
end

4/ 37

-I- Combinatorial Regs

Lesson Overview
Registers

= Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback

Blinky

Broken Blinky
Verilator
Parameters

Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

Nl

always @ ()

begin
o_led = A © i_sw:
o_led = o_led + 7;
if (i_reset)
o_led = O0;
end
This block

o Looks like software
o Acts like you would expect in a simulator
o Takes no time at all in hardware
The hardware acts as if all statements were done at once

Only use “=" in a combinatorial always block

5 / 37

(:1-|- Latches

Lesson Overview
Registers
Combinatorial
= Latches
Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

What happens here?

input wire i_S;
input wire [7:0] i_V;
output reg [7:0] o_R;
always @(x)
if (i_9S)

o_,R = 1_V,;

This is called a latch

o It requires memory

o May do one thing in simulation, another in hardware
o Most FPGA's don't support latches

o Can have subtle timing problems in hardware

Avoid using latches!

6 / 37

-I- Last Assignment Wins

Lesson Overview
Registers
Combinatorial
= Latches
Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

What happens here?

always @(x)
begin

end

No latch is inferred

o This is a very useful pattern!
o o_R now has a default value
This prevents a latch from being inferred
o No memory is required
o The last assighment gives o_R its final value

7 /37

(5| Flip Flops Al

Lesson Overview
Registers
Combinatorial
Latches

= Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

reg [9:0] A;

always @(posedge i_clk)
A<=A+ 1'b1;

Any registers set within an always @(posedge i_c1k) block will
transitions to their new values on the next clock edge only

— Only a bonafide clock edge should be used
— Do not transition on anything you create in logic

Note that we are using <= for assignment

— This is a non-blocking assignment
— Most, if not all, clocked register should be set with <=

8 / 37

(3] Blocking

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops

= Blocking
All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

a

This is a non-blocking assignment

always @(posedge i_clk)
A<=A + 1'b1;

Blocking assignment

always @(posedge i_clk)
A=A+ 1b1;

A blocking assignment’s value may be referenced again before
the clock edge

— Creates the appearance of time passing within the block
— It may also cause simulation-hardware mismatch
— Use with caution

In this case, both generate the same logic

9 / 37

(3] Non-Blocking

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops

= Blocking
All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

What value will be given for A?

O

O

Assume it starts at zero
What will it be after one clock tick?

always @(posedge i_clk)
begin

A <= 5;

A<=A 4+ 1'b1;
end

The assignment only takes place on the clock edge
Last assignment wins

A is set to 1, then 2 on the next clock, 3 on the clock after,

etc.

10 / 37

(2] Blocking

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops

= Blocking
All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

Now what value will be given for A?

O

O

Assume it starts at zero
What will it be after one clock tick?

always @(posedge i_clk)
begin
A
A

5;
A+ 1'b1l;

end

O

O

O

Again, the assighment only takes place on the clock edge
It appears as though it took several steps
Ais set to 6

11 / 37

(2] Blocking

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops

= Blocking
All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

What if something depends upon A in another block?

o Assume A=0 before the clock tick

i

always @(posedge i_clk)
begin
A
A

5;
A+ 1'b1l;

end

always @(posedge i_clk)
B <= A;

o This result is simulation dependent!
o B may be set to 0, or it may be set to 6

Don't do this! Use <= within an always @(posedge i_c1k)

12 / 37

(3] Non-Blocking

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops

= Blocking
All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

Now what will B be set to?

o Assume A=0 before the clock tick

always @(posedge i_clk)
begin
A<=5; // Ilgnored!
A<=A + 1'b1;
end

always @(posedge i_clk)
B <= A;

o A will be set to 1, and B will be set to 0
o On the next clock, A will be set to 2 and B to 1, etc.

Now simulation matches hardware

13 / 37

2l Al in Parallel

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

= All in Parallel
Feedback

Blinky

Broken Blinky
Verilator
Parameters

Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

o A design may contain multiple always blocks
o I he hardware will execute all at once
o T he simulator will execute one at a time

Rules: When using the simulator, ...

o Make sure your design can be synthesized
o Make sure it fits within your chosen device

— This is not a simulator task
— Requires using the synthesizer periodically

o Make sure it maintains an appropriate clock rate

— WEe'll get to timing checks in a moment

14 / 37

-I- Feedback

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
= Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

o Wires in a loop created circular logic
o Clocked registers in a loop creates feedback

assign err = i_actual — o_command;
always @(posedge i_clk)
begin

o_command<=o_command+(err >> 5);

end

Feedback is used commonly in control systems

15 / 37

(3] Blinky

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback

= Blinky
Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

Let’'s make an LED blink!

module blinky(i_clk, o_led);

input wire i_clk;
output wire o_led;
reg [26:0] counter;
initial counter = 0;

always @(posedge i_clk)

counter <= counter + 1'bl;
assign o_led = counter[26];
endmodule

Feel free to synthesize and try this

o The LED should blink at a steady rate
o Rate is determined by the 26 above

16 / 37

(3] Broken Blinky

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback

Blinky

= Broken Blinky
Verilator
Parameters

Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

Here's a common beginner mistake

reg counter,;

always @(posedge i_clk)
counter <= counter + 1'b1l;
assign o_led = counter;

Don't make this mistake

o Notice that counter is only 1-bit

o This will blink at half the i_c1k frequency

o Result is typically way too fast to see any changes
o LED may glow dimly

o Need to slow it down

17 / 37

G-I- Verilator

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
= Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

Simulating our design (blinky) now requires a clock:

i

void

tick (Vblinky x*xtb) {

// The following ewval ()
// redundant many of hours
// of debugging reveal its mnot
tb->eval () ;

tb->i_clk = 1;

tb->eval () ;

tb->i_clk = 0;

tb->eval () ;

looks

a

a

We'll need to toggle the clock input for anything to happen
This operation is so common, it deserves its own function,

tick ()

18 / 37

(:1-|- Verilator

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
= Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

We can now simplify our main loop a touch

i

int main(int argc,
int last_led;
// Setup

char x*xxargv) {

last_led = tb->o0_led;

for(int k=0; k<(1<<20);
// Toggle the clock
tick (tb) ;

k++) {

// Now let’s print the LEDs walue
// anytime ©t changes
if (last_led '= tb->o0_led) {
printf ("k,=,%7d,.", k);
printf("led,=_,%d\n", tb->0_led);
} last_led = tb->o0_led;

19 / 37

(:1-|- Verilator

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
= Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

Can we simulate this? Not easily

Counting to 227

It's extreme slow in simulation.
Let's speed blinky up—just for simulation
We can do this by adjusting the width of the counter

O

O

O

O

We'll use a parameter to do this

i

may take seconds in hardware, but . ..

parameter WIDTH=27;
reg [WIDTH —1:0] counter;
//

assign o_led = counter [WIDTH-—1];

20 / 37

(:1-|- Parameters

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator

= Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

Parameters are very powerfull They allow us to

O

O

Reconfigure a design, after it's been written
Examples:

— ZLipCPU cache sizes can be adjusted by parameters

— Internal memory sizes, implement the divide instruction or
not, specify the type of multiply

— Default serial port speed, number of GPIO pins supported
by a GPIO controller, and more

Verilator argument -GWIDTH=12 sets the WIDTH parameter to 12

T

verilator -Wall -GWIDTH=12 -cc blinky.v

21 / 37

(5] sim Result

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
= Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

T

NN R R RN

==

./blinky

2047 ,
4095,
6143,
8191,
10239,
12287,
14335,
16383,
18431,
20479,

led
led
led
led
led
led
led
led
led
led

O rPrOFRPOFPrPrOFr OF

22 / 37

(:1-|- Trace Generation

Lesson Overview

Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky
Broken Blinky
Verilator
Parameters

Sim Result
Trace
= Generation

GTKWave
Strobe
PPS-I
PPS-II
Stretch
Too Slow
Dimmer

Exercises

This is easy. For more complex designs, we'll need a trace

O

That means writing to a trace file on every clock

Steps

1.

2.

Add the --trace option to the Verilator command line

% verilator -Wall --trace -GWIDTH=12 \
-cc blinky.v

Create a trace from your .cpp file

#include "verilated_vcd_c.h"

//

int main(int argc, char xxargv) A
/S
unsigned tickcount = 0;
//

23 / 37

(:1-|- Trace Generation

i

Lesson Overview Create the trace file Within C—|_—|_
Registers
Combinatorial // . .
;’_:';T:ps int main(Cint argc, char xxargv) {
Blocking //
All in Parallel // Generate a trace
;Tﬁ]dkt;“k Verilated : :traceEverOn (true);
Broken Blinky VerilatedVcdCx* tfp = new VerilatedVcdC;
\Ffer“a“tr tb->trace (tfp, 99);
Sim Result tfp->open("blinkytrace.vcd");
Trace
= Generation
GTKWave // o o .
it:s’ble for (int k=0; k<(1<<20); k++) {
PPS-II tiCk(++tiCkC0unt 5 tb, tfp);
Stretch //
Too Slow
Dimmer }
Exercises }

24 / 37

(:1-|- Trace Generation

Lesson Overview

Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky
Broken Blinky
Verilator
Parameters

Sim Result
Trace
= Generation

GTKWave
Strobe
PPS-I
PPS-II
Stretch
Too Slow
Dimmer

Exercises

Write trace data on every clock

i

void

tick (int tickcount, Vblinky

VerilatedVcdCx*x tfp) {

tb->eval O ;

if (tfp) // dump 2ns before
tfp ->dump(tickcount

tb->i_clk = 1;

tb->eval ();

if (tfp) // Tick every 10mns
tfp ->dump(tickcount

tb->i_clk = 0;

tb->eval O ;

if (tfp) { // Trailing edge
tfp ->dump(tickcount
tfp->flush () ;

*tb ,

the tick

x 10 - 2);
x 10) ;
dump

* 10 + 5);

25 / 37

(:1-|- Trace Generation

Lesson Overview

Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky
Broken Blinky
Verilator
Parameters

Sim Result
Trace
= Generation

GTKWave
Strobe
PPS-I
PPS-II
Stretch
Too Slow
Dimmer

Exercises

You'll need to add verilated_vcd_c.cpp to your g++ build
command in order to support generating a trace as well

% export VINC=/usr/share/verilator/include

%h g++ -I${VINC} -I obj_dir
${VINC}/verilated.cpp
${VINC}/verilated_vcd_c.cpp blinky.cpp
obj_dir/Vblinky__ALL.a -o blinky

Now, running blinky will generate a trace

% ./blinky

You can view it with GTKwave

% gtkwave blinkytrace.vcd ‘

26 / 37

(5] GTKWwave

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
> GTKWave
Strobe

PPS-I

PPS-II

Stretch

Too Slow
Dimmer

Exercises

File Edit Search Time Markers Wiew Help

g w I_—_, B M € P Fomsns To: BOO7685 ns ¢ | Marker:— | Ccursor: 876 us
¥ S57 Signals Waves
L TOP Time '
i clk
o led

Filter: |

Append| | Insert | | Replace

This is how logic debugging is done

o The simulator trace shows you every register’s value
o ...at every clock tick
You can zoom in to find any bugs

O

27 / 37

-I- Strobe

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
= Strobe
PPS-I

PPS-II
Stretch

Too Slow
Dimmer

Exercises

How is this design different from blinky?

module strobe(i_clk, o_led);

input wire i_clk;
output wire o_led;
reg [26:0] counter;

always @(posedge i_clk)
counter <= counter + 1'bl;

assign o_led = &counter[26:24];
endmodule

28 / 37

(5] PPs-

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

= PPS-I
PPS-II
Stretch

Too Slow
Dimmer

Exercises

Can we get an LED to blink once per second?

i

always @(posedge i_clk)
if (counter >= CLOCK_RATE_HZ/2-1)
begin
counter <= 0;
o_led <= lo_1led;
end else
counter <= counter + 1;

When CLOCK_RATE_HZ/2 ticks have passed, the LED will toggle

O

O

This structure is known as an integer clock divider
It offers an exact division

29 / 37

(2] pps-n

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

= PPS-II
Stretch

Too Slow
Dimmer

Exercises

Can we get an LED to blink once per second?

i

parameter CLOCK_RATE_HZ = 100_000_000;

parameter [31:0] INCREMENT

= (1< <30)/(CLOCK_RATE_HZ /4);

input wire i_clk;
output wire o_led:
reg [31:0] counter;
initial counter = 0;

always @(posedge i_clk)

counter <= counter + INCREMENT ;

assign o_led = counter [31];

30 / 37

(2] pps-n Al

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

= PPS-II
Stretch

Too Slow
Dimmer

Exercises

parameter CLOCK_RATE_HZ = 100_000_000;
parameter [31:0] INCREMENT
= (1<<30)/(CLOCK_RATE_HZ /4);
always @(posedge i_clk)
counter <= counter 4+ INCREMENT ;

After CLOCK_RATE_HZ clock edges, the counter will roll over
The divide by four above, on both numerator and
denominator, is just to keep this within 32-bit arithmetic

232
INCREMENT =

CLOCK_RATE_HZ

This is called a fractional clock divider

— The division isn't exact
— It's often good enough

31 /37

-I- Stretch

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

= Stretch
Too Slow
Dimmer

Exercises

Nl

module stretch(i_clk, i_event, o_led);

input wire i_clk, i_event;
output wire o_led;
reg [26:0] counter;

always @(posedge i_clk)
if (i_event)
counter <= 0;
else if (!counter[26])
counter <= counter + 1;

assign o_led = !counter |[26];
endmodule

FPGA signals are often too fast to see

32 /37

(:1-|- Stretch

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II

= Stretch
Too Slow
Dimmer

Exercises

Nl

module stretch(i_clk, i_event, o_led);
reg [26:0] counter;
always @(posedge i_clk)
if (i_event)
counter <= O0;
else if (!counter[26])
counter <= counter + 1;
assign o_led = !counter[26];
endmodule

FPGA signals are often too fast to see

o This slows them down to eye speed
o Only works for a single event though

o Multiple events would overlap, and be no longer distinct

33 / 37

(:1-|- Too Slow

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

™= Too Slow
Dimmer

Exercises

Nl

module tooslow(i_clk, o_led);

input wire i_clk;

output wire o_led;

parameter NBITS = 1024;
reg [NBITS —1:0] counter;

always @(posedge i_clk)
counter <= counter + 1;

assign o_led = counter [NBITS —1];
endmodule

This is guaranteed to fail a timing check

o It's now time to learn how to check timing
o This design should fail, for reasonable clock speeds

34 / 37

(:1-|- Too Slow

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

™= Too Slow
Dimmer

Exercises

Follow your chip vendor's instructions to do a timing check

O

Use your system clock frequency

— For now, that's the clock frequency coming into your

board
— We'll adjust it later

Make sure this design fails

— The carry chain takes time to propagate

— Extra long carry chains take extra long

— If the propagation doesn’t complete before the next clock
... your design will fail (like this one)

From now on, always check timing for a design

— Before loading it onto a board
— Every now and then while simulating

35 / 37

_I- Dimmer

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow

= Dimmer

Exercises

Can you tell me what this will do?

module dimmer(i_clk, o_led);

input wire i_clk;
output wire o_led;
reg [27:0] counter;

always @(posedge i_clk)
counter <= counter + 1;

assign o_led = (counter|[7:0]
< counter[27:20]);
endmodule

36 / 37

(:1-|- Exercises

Lesson Overview
Registers
Combinatorial
Latches

Flip Flops
Blocking

All in Parallel
Feedback
Blinky

Broken Blinky
Verilator
Parameters
Sim Result
Trace Generation
GTKWave
Strobe

PPS-I

PPS-II
Stretch

Too Slow
Dimmer

> Exercises

Implement blinky on your hardware
Implement one of the two PPS designs

— Using a stopwatch, verify the blink rate of 1Hz
— Make the blinks shorter, but at the same frequency

Verify that the 1024 bit tooslow counter will fail timing
Implement the dimmer

37 / 37

	
	Lesson Overview
	Registers
	Combinatorial Regs
	Latches
	Flip Flops
	Blocking
	All in Parallel
	Feedback
	Blinky
	Broken Blinky
	Verilator
	Parameters
	Sim Result
	Trace Generation
	GTKWave
	Strobe
	PPS-I
	PPS-II
	Stretch
	Too Slow
	Dimmer
	Exercises

