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Day one

1. Motivation
2. Basic Operators
3. Clocked Operators
4. Induction
5. Bus Properties

Day two

6. Free Variables
7. Abstraction
8. Invariants
9. Multiple-Clocks
10. Cover
11. Sequences
12. Final Thoughts
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˝ VHDL logic examples
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˝ VHDL logic examples
˝ System Verilog assertion wrappers
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˝ VHDL logic examples
˝ System Verilog assertion wrappers
˝ Each lesson will be followed by an exercise

There are 12 exercises
˝ My goal is to have 50% lecture, 50% exercises
˝ Leading up to building a bus arbiter

and testing an synchronous FIFO
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1. Why are you here?
2. What can I provide?
3. What have I learned from formal methods?

Our Objectives

˝ Get to know a little bit about each other
˝ Motivate further discussion
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What do you want to learn and get out of this course?



From an ARM dev.
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˝ “I think the main difference between FPGA and ASIC
development is the level of verification you have to go
through. Shipping a CPU or GPU to Samsung or whoever,
and then telling them once they’ve taped out that you have a
Cat1 bug that requires a respin is going to set them back
$1M per mask.

˝ “. . . But our main verification is still done with constrained
random test benches written in SV.

˝ “Overall, you are looking at 50 man years per project
minimum for an average project size.”



Would not exist
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“If we would not do formal verification, we would
no longer exist.”

– Shahar Ariel, now the former Head of VLSI design at Mellanox



Pentium FDIV
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One little mistake . . .

. . . $475M later.
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I have proven such things as,

˝ Formal bus properties (Wishbone, Avalon, AXI, etc.)
˝ Bus bridges (WB-AXI, Avalon-WB)
˝ AXI DMA’s, firewalls, crossbars
˝ Prefetches, cache controllers, memory controllers, MMU
˝ SPI slaves and masters
˝ UART, both TX and RX
˝ FIFO’s, signal processing flows, FFT
˝ Display (VGA) Controller
˝ Flash controllers
˝ Formal proof of the ZipCPU
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I’ve found bugs in things I thought were working.

1. FIFO
2. Pre-fetch and Instruction cache
3. SDRAM
4. A peripheral timer

Just how hard can a timer be to get right? It’s just a
counter!



Ex: FIFO
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˝ It worked in my test bench
˝ Failed when reading and writing on the same clock while

empty

– Write first then read worked
– R+W on full FIFO is okay
– R+W on an empty FIFO
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˝ It worked in my test bench
˝ Failed when reading and writing on the same clock while

empty

– Write first then read worked
– R+W on full FIFO is okay
– R+W on an empty FIFO . . . not so much

˝ My test bench didn’t check that, formal did
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˝ It worked in my test bench
˝ Ugliest bug I ever came across was in the prefetch cache

It passed test-bench muster, but failed in the hardware with a
strange set of symptoms

˝ When I learned formal, it was easy to prove that this would
never happen again.

˝ Low logic has always been one of my goals.
Always asking, “will it work if I get rid of this condition?”
Formal helps to answer that question for me.
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˝ It worked in my test bench
˝ It passed my hardware testing

– Test S/W: Week+, no bugs
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˝ It worked in my test bench
˝ It passed my hardware testing

– Test S/W: Week+, no bugs
– Formal methods found the bug
– Full proof took less than ă 30 min
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˝ It worked in my test bench
˝ It passed my hardware testing
˝ Background
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˝ It worked in my test bench
˝ It passed my hardware testing
˝ Background

– SDRAM’s are organized into separate banks, each having
rows and columns

– A row must be “activated” before it can be used.
– The controller must keep track of which row is activated.
– If a request comes in for a row that isn’t activated, the

active row must be deactivated, and the proper row must
be activated.

˝ A subtle bug in my SDRAM controller compared the active
row address against the immediately previous (1-clock ago)
required row address, not the currently requested address.
This bug had lived in my design for years. Formal methods
caught it.



Problem with Test Benches
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˝ Only examines a known good branch
˝ Cannot check for every out of bounds conditions
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˝ Demonstrate design works
˝ Through a normal working path

– or a limited number of extraneous paths

˝ Never rigorous enough to check everything
˝ Not uniform in rigour

For the FIFO,

˝ I only read when I knew it wasn’t empty

For the Prefetch,

˝ I never tested jumping to the last location in a cache line

For the SDRAM,

˝ The error was so obscure, it would be hard to trigger



Before Formal
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This was my method before starting to work with formal.

˝ After . . .

– Proving my design with test
benches

– Directed simulation

˝ I was still chasing bugs in hard-
ware

I still use this approach for DSP al-
gorithms.



Design Approach
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˝ After finding the bug in my
FIFO . . . I was hooked.

˝ Rebuilding everything
. . . now using formal

˝ Formal found more bugs
. . . in example after example

˝ I’m hooked!



When to use it?
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˝ Bus component
I would not build a bus compo-
nent without formal any more

˝ Multiplies
Formal struggles with multipli-
cation



Formal Verification
Basics: assert and assume
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Let’s start at the beginning, and look at the very basics of formal
verification.
Our Objective:

˝ To learn the basic two operators used in formal verification,

– assert()

– assume()

˝ To understand how these affect a design from a state space
perspective

˝ We’ll also look at several examples



Basic Premise

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

23 / 285

Formal methods are built around looking for redundancies.

˝ Basic difference between mediocre and excellent:
Double checking your work

˝ Two separate and distinct fashions

– First method calculates the answer
– Second method proved it was right

˝ Example: Division

– 89, 321{499 “ 179

– Does it? Let’s check: 179 ˚ 499 “ 89, 321 — Yes

˝ Formal methods are similar

– Your design is the first method
– Formal properties describe the second



Basic Operators
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Let’s start with the two basic operators

1. assume()

An assume(X) statement will limit the state space that the
formal verification engine examines.

2. assert()

An assert(X) statement indicates that X must be true, or the
design will fail to prove.



VHDL
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We’ll be using VHDL logic, System Verilog Assertions

˝ Proprietary Verific library gives Yosys access to VHDL
˝ Formal properties will be written in System Verilog
˝ System Verilog bind operator will connect the two



Two basic forms
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always @ (∗ )
as se r t (X ) ;

// Use when your p r o p e r t y has c l o c k dependenc i e s ,
// such as r e f e r e n c i n g an i t ems va l u e i n the pa s t
always @ ( posedge clk )

as se r t (X ) ;

As an example,

always @ (∗ )
as se r t ( counter < 20 ) ;
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Assert
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˝ Assertions define the illegal state space.
˝ Additional assertions will increase the size of the illegal state

space.
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˝ Assumptions limit the universe of all possibilities
˝ Additional assumptions will decrease the size of the total

state space
˝ Caution: One careless assumption can void the proof



The Careless Assumption
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s i gna l : unsigned (15 downto 0) := 0 ;
´́ ´
process ( clk )
begin

i f ( rising_edge ( clk ) ) then
counter <= counter + 1 ;

end i f ;
end process ;

always @ (∗ )
begin

as se r t ( counter <= 100 ) ;
assume ( counter <= 90 ) ;

end

Question: Will counter ever reach 120?



restrict vs assume
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restrict () is very similar to assume()

Operator Formal Verification Traditional Simulation

restrict () Restricts search Ignored
assume() space Halts simulation
assert() Illegal state with an error



restrict vs assume
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restrict () is very similar to assume()

Operator Formal Verification Traditional Simulation

restrict () Restricts search Ignored
assume() space Halts simulation
assert() Illegal state with an error

˝ restrict (): Like assume(X), it also limits the state space
˝ But in a traditional simulation . . .

– restrict () is ignored
– assume() is turned into an assert()



Bounded Model Checking
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For bounded model checking,

1. Start at the initial state
2. Examine all possible states for N clocks
3. Try to find a way to make an assert (); fail
4. If it’s not possible in N clocks, then pass



No Solution
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Problem: initial assume(!initial_state);

Model fails, no line number given.
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Problem: assume(!reachable_state);

Model fails, no line number given.



Further thoughts
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Unlike the rest of your digital design, formal properties . . .

˝ don’t need to meet timing
˝ don’t need to meet a minimum logic requirement

We’ll discuss this more as we go along.



Example Bus Slave
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Here’s an example of a bus slave

˝ Inputs are assumed
˝ Outputs are asserted



Example Bus Master
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Question: How would a bus master be different?
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Question: How would a bus master be different?

The slave’s outputs are the master’s inputs

˝ assume() the inputs from the slave
˝ assert() the outputs from the master
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Question: What if both slave and master signals were part of the
same design?
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Question: What if both slave and master signals were part of the
same design?

˝ All of the wires are now internal
˝ They should therefore be assert()ed



Serial Port Transmitter
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˝ Whenever the serial port is idle, the output line should be
high

i f ( state == IDLE )
as se r t ( o_uart_tx ) ;

˝ Whenever the serial port is not idle, busy should be high

i f ( state != IDLE )
as se r t ( o_busy ) ;

e l s e
as se r t ( ! o_busy ) ;

˝ The design can only ever be in a valid state

as se r t ( ( state <= TXUL_STOP )
| | ( state == TXUL_IDLE ) ) ;



Bus Arbiter
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˝ Arbiter cannot grant both A and B access

always @ (∗ )
as se r t ( ( ! grant_A ) | | ( ! grant_B ) ) ;

˝ While one has access, the other must be stalled

always @ (∗ )
i f ( grant_A )

as se r t ( stall_B ) ;

always @ (∗ )
i f ( grant_B )

as se r t ( stall_A ) ;



Bus Arbiter
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˝ While one is stalled, its outstanding requests must be zero

always @ (∗ )
i f ( grant_A )
begin

as se r t ( f_nreqs_B == 0 ) ;
as se r t ( f_nacks_B == 0 ) ;
as se r t ( f_outstanding_B == 0 ) ;

end

I use the prefix f_ to indicate a variable that is

˝ Not part of the design
˝ But only used for Formal Verification



Avalon bus
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˝ Avalon bus: will never issue a read and write request at the
same time

always @ (∗ )
assume ( ( ! i_av_read ) | | ( ! i_av_write ) ) ;

˝ The bus is initially idle

i n i t i a l assume ( ! i_av_read ) ;
i n i t i a l assume ( ! i_av_write ) ;
i n i t i a l assume ( ! i_av_lock ) ;
i n i t i a l a s se r t ( ! o_av_readdatavalid ) ;
i n i t i a l a s se r t ( ! o_av_writeresponsevalid ) ;



Avalon bus
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˝ Cannot respond to both read and write in the same clock

always @ (∗ )
assume ( ( ! i_av_readdatavalid )

| | ( ! i_av_writeresponsevalid ) ) ;

Remember ! (A&&B) is equivalent to (!A )||(! B)

˝ Cannot respond if no request is outstanding

always @ (∗ )
begin

i f ( f_wr_outstanding == 0)
as se r t ( ! o_av_writeresponsevalid ) ;

i f ( f_rd_outstanding == 0)
as se r t ( ! o_av_readdatavalid ) ;

end
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˝ o_STB can only be high if o_CYC is also high

always @ (∗ )
i f ( o_STB )

as se r t ( o_CYC ) ;

˝ Count the number of outstanding requests:

f_outstanding <= ”0” when ( i_reset )
e l s e f_nreqs ´ f_nacks ;

˝ Acks can only respond to valid requests

i f ( f_outstanding == 0)
assume ( ! i_wb_ack ) ;
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˝ Well, what if a request is being made now?

i f ( ( f_outstanding == 0)
&&((!o_wb_stb ) | | ( i_wb_stall ) ) )

assume ( ! i_wb_ack ) ;

˝ If not within a bus request, the ACK and ERR lines must be
low

i f ( ! o_CYC )
begin

assume ( ! i_ACK ) ;
assume ( ! i_ERR ) ;

end

˝ Following any reset, the bus will be idle
˝ Requests remain unchanged until accepted
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Want a guarantee that the cache response is consistent?

˝ A valid cache entry must ...

always @ ( posedge i_clk )
i f ( o_valid )
begin

// Be marked v a l i d i n the cache
as se r t ( cache_valid [ f_addr [ CW´1:LW ] ] ) ;
// Have the same cache tag as add r e s s
as se r t ( f_addr [ AW´1:LW ] ==

cache_tag [ f_addr [ CW´1:LW ] ] ) ;
// Match the v a l u e i n the cache
as se r t ( o_data ==

cache_data [ f_addr [ CW´1 : 0 ] ) ;
// Must be i n r e s pon s e to a v a l i d
// r e q u e s t
as se r t ( waiting_requests != 0 ) ;

end
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Consider a multiply

˝ Just because an algorithm doesn’t meet timing
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Consider a multiply

˝ Just because an algorithm doesn’t meet timing, or
˝ Just because it take up logic your FPGA doesn’t have
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Consider a multiply

˝ Just because an algorithm doesn’t meet timing, or
˝ Just because it take up logic your FPGA doesn’t have,

doesn’t mean you can’t use it now

always @ ( posedge i_clk )
begin

f_answer = 0 ;
f o r (k=0; k<NA ; k=k+1)
begin

i f ( i_a [ k ] )
f_answer = f_answer + (i_b<<k ) ;

end

as se r t ( o_result == f_answer ) ;
end
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Let’s talk about that multiply some more . . .

˝ The one thing formal solver’s don’t handle well is multiplies
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Let’s talk about that multiply some more . . .

˝ The one thing formal solver’s don’t handle well is multiplies

Abstraction offers alternatives
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˝ For a page result to be valid, it must match the TLB

always @ (∗ )
i f ( last_page_valid )
begin

as se r t ( tlb_valid [ f_last_page ] ) ;
as se r t ( last_ppage ==

tlb_pdata [ f_last_page ] ) ;
as se r t ( last_vpage ==

tlb_vdata [ f_last_page ] ) ;
as se r t ( last_ro ==

tlb_flags [ f_last_page ] [ ROFLAG ] ) ;
as se r t ( last_exe ==

tlb_flags [ f_last_page ] [ EXEFLG ] ) ;
as se r t ( r_context_word [ LGCTXT´1:1]

== tlb_cdata [ f_last_page ] ) ;
end
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˝ Writing requires the right row of the right bank to be
activated

always @ ( posedge i_clk )
i f ( ( f_past_valid )&&(!maintenance_mode ) )
case ( f_cmd )

// . . .
F_WRITE : begin

// Response to a w r i t e r e q u e s t
as se r t ( f_we ) ;
// Bank i n qu e s t i o n must be a c t i v e
as se r t ( bank_active [ o_ram_bs ] == 3 ’ b111 ) ;
// Ac t i v e row must be f o r t h i s a dd r e s s
as se r t ( bank_row [ o_ram_bs ]

== f_addr [ 2 2 : 1 0 ] ) ;
// Must be s e l e c t i n g the r i g h t bank
as se r t ( o_ram_bs == f_addr [ 9 : 8 ] ) ;
end

// . . .
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Let’s work through a counter as an example.

exercise-01/ Contains three files
counter.vhd This will be the HDL source for

our demo
counter vhd.sv This contains the formal prop-

erties
counter vhd.sby This is the SymbiYosys script

for the demo

Our Objectives:

˝ Walk through the steps in the tool-flow
˝ Hands on experience with SymbiYosys
˝ Ensure everyone has a working version of SymbiYosys
˝ Find and fix a design bug
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ent i t y counter i s
gener ic ( MAX_AMOUNT : natural := 22 ) ;

´́ ´́ . . . .
s i gna l counts : unsigned (15 downto 0 ) ;

´́ ´́
process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
i f ( ( i_start_signal = ’1 ’ )

and (0 = counts ) ) then
counts <= to_unsigned ( MAX_AMOUNT´1, 1 6 ) ;

e l s e
counts <= counts ´ 1 ;

end i f ;
end i f ;

end process ;

o_busy <= ’1 ’ when (0 = counts ) e l s e ’ 0 ’ ;
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module counter_vhd ( i_clk , i_start_signal ,
counts , o_busy ) ;

parameter [ 1 5 : 0 ] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [ 1 5 : 0 ] counts ;
input wire o_busy ;

always @ (∗ )
as se r t ( counts < MAX_AMOUNT ) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT ( MAX_AMOUNT ) ) copy ( . ∗ ) ;
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// VHDL Ports and internal signals
module counter_vhd ( i_clk , i_start_signal ,

counts , o_busy ) ;

parameter [ 1 5 : 0 ] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [ 1 5 : 0 ] counts ;
input wire o_busy ;

always @ (∗ )
as se r t ( counts < MAX_AMOUNT ) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT ( MAX_AMOUNT ) ) copy ( . ∗ ) ;
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module counter_vhd ( i_clk , i_start_signal ,
counts , o_busy ) ;

// Generic declaration
parameter [ 1 5 : 0 ] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [ 1 5 : 0 ] counts ;
input wire o_busy ;

always @ (∗ )
as se r t ( counts < MAX_AMOUNT ) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT ( MAX_AMOUNT ) ) copy ( . ∗ ) ;
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module counter_vhd ( i_clk , i_start_signal ,
counts , o_busy ) ;

parameter [ 1 5 : 0 ] MAX_AMOUNT = 22 ;
// All wrapper ports are inputs
input wire i_clk , i_start_signal ;
input wire [ 1 5 : 0 ] counts ;
input wire o_busy ;

always @ (∗ )
as se r t ( counts < MAX_AMOUNT ) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT ( MAX_AMOUNT ) ) copy ( . ∗ ) ;
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module counter_vhd ( i_clk , i_start_signal ,
counts , o_busy ) ;

parameter [ 1 5 : 0 ] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [ 1 5 : 0 ] counts ;
input wire o_busy ;

// Formal properties start here
always @ (∗ )

as se r t ( counts < MAX_AMOUNT ) ;
endmodule

bind counter counter_vhd

#(.MAX_AMOUNT ( MAX_AMOUNT ) ) copy ( . ∗ ) ;
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module counter_vhd ( i_clk , i_start_signal ,
counts , o_busy ) ;

parameter [ 1 5 : 0 ] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [ 1 5 : 0 ] counts ;
input wire o_busy ;

always @ (∗ )
as se r t ( counts < MAX_AMOUNT ) ;

endmodule
// Connect the two modules together
bind counter counter_vhd

#(.MAX_AMOUNT ( MAX_AMOUNT ) ) copy ( . ∗ ) ;
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc Bounded model checking mode
[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc Run, using yosys-smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc
[ s c r i p t ] Yosys commands
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd Read VHDL file
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv Read SV file w/SVA
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter Prepare the file for formal
[ f i l e s ]
counter . vhd
counter_vhd . sv
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In the file, exercise-01/counter vhd.sby, you’ll find:

[ opt ions ]
mode bmc

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
# . . . o t h e r f i l e s would go he r e
prep ´top counter

[ f i l e s ] List of files to be used
counter . vhd
counter_vhd . sv
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Other usefull yosys commands

[ opt ions ]
mode bmc

depth 20
[ engines ]
smtbmc yices

# smtbmc b o o l e c t o r
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[ f i l e s ]
counter . v
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Other usefull yosys commands

[ opt ions ]
mode bmc Other modes: prove, cover, live
depth 20
[ engines ]
smtbmc yices

# smtbmc b o o l e c t o r
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[ f i l e s ]
counter . v
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Other usefull yosys commands

[ opt ions ]
mode bmc

depth 20 # of Steps to examine
[ engines ]
smtbmc yices

# smtbmc b o o l e c t o r
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[ f i l e s ]
counter . v
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Other usefull yosys commands

[ opt ions ]
mode bmc

depth 20
[ engines ]
smtbmc yices Yices theorem prover (default)
# smtbmc b o o l e c t o r
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[ f i l e s ]
counter . v
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Other usefull yosys commands

[ opt ions ]
mode bmc

depth 20
[ engines ]
smtbmc yices

# smtbmc b o o l e c t o r Other potential solvers
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[ f i l e s ]
counter . v
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Other usefull yosys commands

[ opt ions ]
mode bmc

depth 20
[ engines ]
smtbmc yices

# smtbmc b o o l e c t o r
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all We’ll discusss this later
[ f i l e s ]
counter . v
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Other usefull yosys commands

[ opt ions ]
mode bmc

depth 20
[ engines ]
smtbmc yices

# smtbmc b o o l e c t o r
# smtbmc z3
[ s c r i p t ]
read ´formal counter . v
# . . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[ f i l e s ]
counter . v Full or relative pathnames go here
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Run: % sby -f counter vhd.sby
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Run: % sby -f counter vhd.sby
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Run: % sby -f counter vhd.sby
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Look at source line 55, and fire up gtkwave
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Run: % gtkwave counter vhd/engine 0/trace.vcd
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Run: % gvim demo-rtl/counter vhd.v

What did we do wrong?
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Run: % demo-rtl/counter vhd.v

Notice anything wrong?
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Run: % demo-rtl/counter vhd.v

Notice anything wrong?

How about the missing initial value?
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˝ Problem: No initial statement
˝ Solver finds an invalid initial state
˝ Model fails
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Try adding in the initial value, will it work?
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Our Objective:

˝ To learn how to make assertions crossing time intervals

– $past()

˝ Before the beginning of time

– Assumptions always hold
– Assertions rarely hold

˝ How to get around this with f_past_valid
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˝ $past(X) Returns the value of X one clock ago.
˝ $past(X,N) Returns the value of X N clocks ago.
˝ Depends upon a clock

– This is illegal

always @ (∗ )
i f (X )

as se r t (Y == $past (Y ) ) ;

No clock is associated with the $past operator.
– But you can do this

always @ ( posedge clk )
i f (X )

as se r t (Y == $past (Y ) ) ;
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Let’s modify our counter, by creating some additional properties:

always @ (∗ )
assume ( ! i_start_signal ) ;

always @ ( posedge clk )
as se r t ( $past ( counter == 0 ) ) ;

˝ i_start_signal is now never true, so the counter should
always be zero.

˝ assert(counter == 0);

This should always be true, since counter starts at zero, and
is never changed from zero.

˝ Will assert($past(counter == 0)); succeed?

You can find this file in exercise-02/pastassert.vhd
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˝ This fails

always @ (∗ )
assume ( ! i_start_signal ) ;

always @ ( posedge clk )
as se r t ( $past ( counter == 0 ) ) ;
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˝ This fails

always @ (∗ )
assume ( ! i_start_signal ) ;

always @ ( posedge clk )
as se r t ( $past ( counter == 0 ) ) ;

˝ Before time, counter is unconstrained.
˝ The solver can make it take on any value it wants in order to

make things fail
˝ This will not show in the VCD file
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˝ This succeeds

always @ (∗ )
assume ( ! i_start_signal ) ;

always @ (∗ )
as se r t ( counter == 0 ) ;
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Let’s try again:

always @ ( posedge clk )
i f ( $past ( i_start_signal ) )

as se r t ( counter == MAX_AMOUNT´1’b1 ) ;

This should work, right?
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Let’s try again:

always @ ( posedge clk )
i f ( $past ( i_start_signal ) )

as se r t ( counter == MAX_AMOUNT´1’b1 ) ;

This should work, right? No, it fails.

˝ i_start_signal is unconstrained before time
˝ counter is initially constrained to zero
˝ If i_start_signal is one before time,

counter will still be zero when time begins
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We can fix this with a register I call, f_past_valid:

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ ( posedge clk )

f_past_valid <= 1 ’b1 ;

always @ ( posedge clk )
i f ( ( f_past_valid)&&($past ( i_start_signal ) ) )

as se r t ( counter == MAX_AMOUNT´1’b1 ) ;

Will this work?
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We can fix this with a register I call, f_past_valid:

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ ( posedge clk )

f_past_valid <= 1 ’b1 ;

always @ ( posedge clk )
i f ( ( f_past_valid)&&($past ( i_start_signal ) ) )

as se r t ( counter == MAX_AMOUNT´1’b1 ) ;

Will this work? Almost, but not yet.
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˝ What about the case where i_start_signal is raised while
the counter isn’t zero?

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ ( posedge clk )

f_past_valid <= 1 ’b1 ;

always @ ( posedge clk )
i f ( ( f_past_valid)&&($past ( i_start_signal ) )

&&($past ( counter == 0) ) )
as se r t ( counter == MAX_AMOUNT´1’b1 ) ;

˝ Will this work?
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˝ What about the case where i_start_signal is raised while
the counter isn’t zero?

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ ( posedge clk )

f_past_valid <= 1 ’b1 ;

always @ ( posedge clk )
i f ( ( f_past_valid)&&($past ( i_start_signal ) )

&&($past ( counter == 0) ) )
as se r t ( counter == MAX_AMOUNT´1’b1 ) ;

˝ Will this work? Yes, now it will work
˝ You’ll find lots of references to f_past_valid in my own

designs
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Let’s look at some practical examples
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The rule: Every design should start in the reset state.

i n i t i a l assume ( i_RESET ) ;

always @ (∗ )
i f ( ! f_past_valid )

assume ( i_RESET ) ;

What would be the difference between these two properties?
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The rule: On the clock following a reset, there should be no
outstanding bus requests.

always @ ( posedge clk )
i f ( ( f_past_valid)&&($past ( i_RESET ) ) )

as se r t ( ! o_CYC ) ;
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Two times registers must have their reset value

˝ Initially
˝ Following a reset

always @ ( posedge clk )
i f ( ( ! f_past_valid ) | | ( $past ( i_reset ) ) )
begin

as se r t ( ! o_CYC ) ;
as se r t ( ! o_STB ) ;
// e t c .

end
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The rule: while a request is being made, the request cannot
change until it is accepted.

always @ ( posedge clk )
i f ( ( f_past_valid )

&&($past ( o_STB ))&&($past ( i_STALL ) ) )
begin

as se r t ( o_STB ) ;
as se r t ( o_REQ == $past ( o_REQ ) ) ;

end
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Many of my projects include some type of “busy counter”

˝ Serial port logic must wait for a baud clock
Transmit characters must wait for the port to be idle

˝ I2C logic needs to slow the clock down
˝ SPI logic may also need to slow the clock down

Objectives:

˝ Gain some confidence using formal methods to prove that
alternative designs are equivalent
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Here’s the basic design. It should look familiar.

process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
i f ( i_reset ) then

counter <= to_unsigned (0 , 1 6 ) ;
e l s i f ( ( i_start_signal = ’1 ’ )

and (0 = counter ) ) then
counter <= to_unsigned ( MAX_AMOUNT ´1 ,16) ;

e l s i f (0 /= counter ) then
counter <= counter ´ 1 ;

end i f ;
end i f ;

end process ;

o_busy <= ’0 ’ when (0 = counter ) e l s e ’ 1 ’ ;
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You can find the design in exercise-03/busyctr.vhd.
Exercise: Create the following properties:

1. i_start_signal may be raised at any time
No property needed here

2. Once raised, assume i_start_signal will remain high until
it is high and the counter is no longer busy.

3. o_busy will always be true while the counter is non-zero
Make sure you check o_busy both when counter == 0 and
counter != 0

This requires an assertion
4. If the counter is non-zero, it should always be counting down

Beware of the reset!
This requires another assertion
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Let’s draw this requirement out

2. Once raised, assume i_start_signal will remain high until
it is high and the counter is no longer busy.

i clk

i start signal

o busy

counter 5 4 3 2 1 0 21
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Exercise:

1. Make o_busy a clocked register

process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
o_busy <= ´́ Your l o g i c goes he r e

end i f ;
end process ;

2. Prove that o_busy is true if and only if the counter is
non-zero

˝ You can use this approach to adjust your design to meet
timing

– Shuffle logic from one clock to another, then
– Prove the new design remains valid
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If you want to formally verify your design, BMC is insufficient

˝ Bounded Model Checking (BMC) will only prove that your
design is correct for the first N clocks.

˝ It cannot prove that the design won’t fail on the next clock,
clock N ` 1

˝ This is the purpose of the induction step: proving correctness
for all time

Our Goals

˝ Be able to explain what induction is
˝ Be able to explain why induction is valuable
˝ Know how to run induction
˝ What are the unique problems associated with induction
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Proof by induction has two steps:

1. Base case: Prove for N “ 0 (or one)
2. Inductive step: Assume true for N , prove true for N ` 1.

Example: Prove
N´1
ÿ

n“0

xn “
1´ xN

1´ x

˝ For N “ 1, the sum is x0 or one

N´1
ÿ

n“0

xn “ x0 “
1´ x

1´ x

So this is true (for x ‰ 1).
˝ For the inductive step, we’ll

– Assume true for N , then prove for N ` 1
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Prove
N´1
ÿ

n“0

xn “
1´ xN

1´ x
for all N

˝ Assume true for N , prove for N ` 1
N
ÿ

n“0

xn “ xN `
N´1
ÿ

n“0

xn “ xN `
1´ xN

1´ x

˝ Prove for N ` 1

N
ÿ

n“0

xn “
1´ x

1´ x
xN `

1´ xN

1´ x

“
xN ´ xN`1 ` 1´ xN

1´ x
“

1´ xN`1

1´ x

This proves the inductive case.
˝ Hence this is true for all N (where N ą 0 and x ‰ 1)
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Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s
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Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

This is what we did with BMC

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s
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Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

This is our next step
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Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

Why use k induction?
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Formal verification uses k induction

˝ Base case:
Assume the first N steps do not violate any assumptions, . . .
Prove that the first N steps do not violate any assertions.
The is the BMC pass we’ve already done.

˝ Inductive Step:
Assume N steps exist that neither violate any assumptions
nor any assertions, and
Assume the N ` 1 step violates no assumptions, . . .
Prove that the N ` 1 step does not violate any assertions.
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BMC and induction are very different.

˝ BMC, the base case

˝ Induction step

˝ The number of BMC time-steps steps must be more than the
number of inductive time-steps

˝ Register values at the beginning of the inductive step can be
anything allowed by your assertions and assumptions

˝ This is where the work takes place.
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The general rule hasn’t changed:

˝ assume inputs,
˝ assert internal states and any outputs.

If you assume too much, your design will pass formal verification
and still not work.
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Some assertions:

˝ Games are played on black squares
˝ Players will never have more than 12 pieces
˝ Only legal moves are possible
˝ Game is over when one side can no longer move

Where might the induction engine start?
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Black’s going to move and win
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White’s going to move and win
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Black’s going to . . . , huh?
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Would this pass our criteria?
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What can we learn from Checkers?

˝ Inductive step starts in the middle of the game
Only the assumptions and asserts are used to validate the
game

˝ All of the FF’s (variables) start in arbitrary states
These states are only constrained by your assumptions and
assertions.

˝ Your formal constraints are required to limit the allowable
states



The Trap

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

Ź The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

95 / 285

˝ If your formal properties are not strict enough,
Induction may start in an unreachable state

˝ This is a common problem!
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To make induction work, you must . . .

˝ assume unrealistic inputs will never happen
˝ assert any remaining unreachable states are illegal
˝ Induction often requires more properties than BMC alone
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Unlike BMC, the results of induction might be inconclusive

k
In
d
u
ct
io
n Basecase (BMC)

FAIL PASS

FAIL Design UNKNOWN
PASS Fails SUCCESS!

The k induction pass will fail if your design doesn’t have enough
assertions.
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There’s also a difference in when BMC and induction finish

˝ BMC will finish early if the design FAILs
˝ Induction will finish early if the design PASSes
˝ In all other cases, they will take a full depth steps

You can use this fact to trim the depth of your proof

˝ Once induction succeeds, trim your proof depth to that
length

˝ This will immediately make your proof run that much faster
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˝ Let’s look at some examples
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This design would pass many steps of BMC

s i gna l counter : unsigned (15 downto 0) := 0 ;
´́ ´́
process ( clk )
begin

i f ( rising_edge ( clk ) ) then
counter <= counter + 1 ;

end i f ;
end process ;

always @ (∗ )
as se r t ( counter < 16 ’ d65000 ) ;

It will not pass induction.
Can you explain why not?
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Here’s another counter that will pass BMC, but not induction

s i gna l : counter : unsigned (15 downto 0) := 0 ;
´́ ´́

i f ( rising_edge ( clk ) ) then
i f ( counter = to_unsigned (22 , 16) ) then

counter <= 0 ;
e l s e

counter <= counter + 1 ;
end i f ;

end i f ;

always @ (∗ )
as se r t ( counter != 16 ’ d500 ) ;

Can you explain why not?
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With one simple change, this design will now pass induction

s i gna l : counter : unsigned (15 downto 0) := 0 ;
´́ ´́

i f ( rising_edge ( clk ) ) then
i f ( counter = to_unsigned (22 , 16) ) then

counter <= 0 ;
e l s e

counter <= counter + 1 ;
end i f ;

end i f ;

always @ (∗ )
as se r t ( counter <= 16 ’ d22 ) ;

See the difference?
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These shift registers will be equal during BMC, but require at
least sixteen steps to pass induction

s i gna l sa : unsigned (15 downto 0) := 0 ;
s i gna l sb : unsigned (15 downto 0) := 0 ;
´́ ´́

i f ( rising_edge ( clk ) ) then
begin

sa <= sa (14 downto 0) & i_bit ;
sb <= sb (14 downto 0) & i_bit ;

end i f ;

always @ (∗ )
as se r t (sa [ 1 5 ] == sb [ 1 5 ] ) ;

Can you explain why it would take so long?
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This design is almost identical to the last one, yet fails induction.
The key difference is the if (i_ce = ’1’).

s i gna l sa : unsigned (15 downto 0) := 0 ;
s i gna l sb : unsigned (15 downto 0) := 0 ;
´́ ´́

i f ( rising_edge ( clk ) ) then
begin

i f ( i_ce = ’1 ’ ) then
sa <= sa (14 downto 0) & i_bit ;
sb <= sb (14 downto 0) & i_bit ;

end i f ;
end i f ;

always @ (∗ )
as se r t (sa [ 1 5 ] == sb [ 1 5 ] ) ;

Can you explain why this wouldn’t pass?
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Several approaches to fixing this:

1. assume(i_ce);
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Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option
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Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);
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Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
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Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc

˝ abc pdr

˝ aiger suprove



Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc Inconclusive Proof (Induction fails)
˝ abc pdr Pass
˝ aiger suprove Pass
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Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc Inconclusive Proof (Induction fails)
˝ abc pdr Pass
˝ aiger suprove Pass

Most of these options work for some designs only
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Here’s how we’ll change our sby file:

[ opt ions ]
mode prove

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all
[ f i l e s ]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv
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Here’s how we’ll change our sby file:

[ opt ions ]
mode prove Use BMC and k-induction
[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all
[ f i l e s ]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv
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Here’s how we’ll change our sby file:

[ opt ions ]
mode prove

[ engines ]
smtbmc Other potential engines would go here
[ s c r i p t ]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all
[ f i l e s ]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv
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Here’s how we’ll change our sby file:

[ opt ions ]
mode prove

[ engines ]
smtbmc
[ s c r i p t ]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all Here’s where opt merge would go
[ f i l e s ]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv
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Exercise #4: dblpipe.vhd

one : lfsr_fib port map (
i_clk => i_clk , i_reset => ’ 0 ’ ,
i_ce => i_ce , i_in => i_data ,
o_bit => a_data ) ;

two : lfsr_fib port map (
i_clk => i_clk , i_reset => ’ 0 ’ ,
i_ce => i_ce , i_in => i_data ,
o_bit => b_data ) ;

process ( a_data , b_data )
begin

o_data <= a_data xor b_data ;
end process ;
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Exercise #4: dblpipe.vhd

˝ lfsr_fib just implements a Fibonacci linear feedback shift
register,

sreg (LN´2 downto 0) <= sreg (LN´1 downto 1 ) ;
sreg (LN´1) <= ( xor ( sreg and TAPS ) ) xor i_in ;
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Exercise #4: dblpipe.vhd, lfsr fib.vhd

process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
i f ( i_reset = ’1 ’ ) then

sreg <= INITIAL_FILL ;
e l s i f ( i_ce = ’1 ’ ) then

sreg (LN´2 downto 0) <= sreg (LN´1 downto 1 ) ;
sreg (LN´1) <= ( xor ( sreg and TAPS ) )

xor i_in ;
end i f ;

end i f ;
end process ;

o_bit <= sreg ( 0 ) ;

˝ Both registers one and two use the exact same logic
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Exercise #4:

˝ Using dblpipe.vhd

– Prove that the output, o_data, is zero
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Galois and Fibonacci are supposedly identical

˝ Galois

˝ Fibonacci

˝ Exercise #5 will be to prove these two implementations are
identical
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Exercise #5:

˝ exercise-05/ contains files lfsr equiv.vhd,
lfsr gal.vhd, and lfsr fib.vhd.

˝ lfsr gal.vhd contains a Galois version of an LFSR
˝ lfsr fib.vhd contains a Fibonacci version of the same

LFSR
˝ lfsr equiv.vhd contains an assertion that these are

equivalent

Prove that these are truly equivalent shift registers.
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Following an induction failure, look over the trace

If you see a problem in section . . .

A You have a missing one or more assertions
You’ll only have this problem with induction.

B You have a failing assert @(posedge clk)

C You have a failing assert @(∗)

These latter two indicate a potential logic failure, but they
could still be caused by property failures.
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We have everything we need now to write formal properties for a
bus

˝ This lesson walks through an example the Wishbone Bus

Our Objectives:

˝ Learn to apply formal methods to something imminently
practical

˝ Learn to build the formal description of a bus component
˝ Help lead up to a bus arbiter component
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˝ Why use the Wishbone? It’s simpler!
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From the master’s perspective:
Specification name My name

CYC O o wb cyc
STB O o wb stb
WE O o wb we

ADDR O o wb addr
DATA O o wb data
SEL O o wb sel

STALL I i wb stall
ACK I i wb ack
DATA I i wb data

ERR I i wb err
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From the slave’s perspective:
Specification name My name

CYC I i wb cyc
STB I i wb stb
WE I i wb we

ADDR I i wb addr
DATA I i wb data
SEL I i wb sel

STALL O o wb stall
ACK O o wb ack
DATA O o wb data

ERR O o wb err
To swap perspectives from master to slave . . .

˝ Swap the port direction
˝ Swap the assume() statements for assert()s
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CLK

o CYC

o STB

o WE

o ADDR A0

o DATA

i STALL

i ACK

i DATA D0

˝ STB must be low when CYC is low
˝ If CYC goes low mid-transaction, the transaction is aborted
˝ While STB and STALL are active, the request cannot change
˝ One request is made for every clock with STB and !STALL
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CLK

o CYC

o STB

o WE

o ADDR A0

o DATA

i STALL

i ACK

i DATA D0

˝ One ACK response per request
˝ No ACKs allowed when the bus is idle
˝ No way to stall the ACK line
˝ The bus result is in i DATA when i ACK is true
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CLK

o CYC

o STB

o WE

o ADDR A1 A2 A3

o DATA D1 D2 D3

i STALL

i ACK

i DATA

Let’s start building some formal properties
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˝ The bus starts out idle, and returns to idle after a reset

always @ ( posedge i_clk )
i f ( ( ! f_past_valid ) | | ( $past ( i_reset ) ) )
begin

assume ( ! i_wb_ack ) ;
assume ( ! i_wb_err ) ;
//
as se r t ( ! o_wb_cyc ) ;
as se r t ( ! o_wb_stb ) ;

end
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˝ The bus starts out idle, and returns to idle after a reset

always @ ( posedge i_clk )
i f ( ( ! f_past_valid ) | | ( $past ( i_reset ) ) )
begin

assume ( ! i_wb_ack ) ;
assume ( ! i_wb_err ) ;
//
as se r t ( ! o_wb_cyc ) ;
as se r t ( ! o_wb_stb ) ;

end

˝ STB is low whenever CYC is low

always @ (∗ )
i f ( ! o_wb_cyc )

as se r t ( ! o_wb_stb ) ;
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˝ While STB and STALL are active, the request doesn’t change

ass ign f_request = { o_stb , o_we , o_addr ,
o_data } ;

always @ ( posedge clk )
i f ( $past ( o_wb_stb)&&($past ( i_wb_stall ) ) )

as se r t ( f_request == $past ( f_request ) ) ;

˝ Did we get it?
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˝ While STB and STALL are active, the request doesn’t change

ass ign f_request = { o_stb , o_we , o_addr ,
o_data } ;

always @ ( posedge clk )
i f ( $past ( o_wb_stb)&&($past ( i_wb_stall ) ) )

as se r t ( f_request == $past ( f_request ) ) ;

˝ Did we get it? Well, not quite
o_data is a don’t care for any read request
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˝ While STB and STALL are active, the request doesn’t change

ass ign f_rd_request = { o_stb , o_we , o_addr } ;
ass ign f_wr_request = { f_rd_request , o_data } ;

always @ ( posedge clk )
i f ( ( f_past_valid )
&&($past ( o_wb_stb ))&&($past ( i_wb_stall ) ) )

begin
// F i r s t , f o r reads ´́ o da ta i s a don ’ t c a r e
i f ( $past ( ! i_wb_we ) )

as se r t ( f_rd_request == $past ( f_rd_request ) ) ;
// Second , f o r w r i t e s ´́ o da ta must not change
i f ( $past ( i_wb_we ) )

as se r t ( f_wr_request == $past ( f_wr_request ) ) ;
end
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˝ No acknowledgements without a request
˝ No errors without a request
˝ Following any error, the bus cycle ends
˝ A bus cycle can be terminated early
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The rule: the slave (external) cannot stall the master more than
F_OPT_MAXSTALL counts:

i f ( rising_edge ( i_clk ) ) then
i f ( ( i_reset = ’1 ’ ) or ( o_CYC = ’0 ’ )

or ( ( o_STB= ’1 ’)
and ( i_stall = ’0 ’ ) ) ) then

f_stall_count <= 0 ;
e l s e

f_stall_count <= f_stall_count + 1 ;
end i f ;

end i f ;

always @ ( posedge clk )
i f ( o_CYC )

assume ( f_stall_count < F_OPT_MAXSTALL ) ;

This solves the i_ce problem, this time with the i_STALL signal
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The rule: the slave can only respond to requests

process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
f_nreqs <= to_unsigned (0 , F_LGDEPTH ) ;

e l s i f ( ( i_STB = ’1 ’ ) and ( o_STALL = ’0 ’ ) ) then
f_nreqs <= f_nreqs + 1 ;

end i f ;
end process ;

´́ Need a s i m i l a r coun t e r f o r acknowledgements

always @ (∗ )
i f ( f_nreqs == f_nacks )

as se r t ( ! o_ACK ) ;

The logic above almost works. Can any one spot the problems?
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Let’s build up to proving a WB arbiter

˝ Let’s prove (BMC + k-Induction) . . .

1. Exercise #6: A simple arbiter
exercise-06/reqarb.vhd

2. Exercise #7: Then a Wishbone bus arbiter
exercise-07/wbpriarbiter.vhd

˝ Given a set of bus properties: fwb slave.v
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The basics

˝ *_req requests a transaction
˝ *_data, the contents of the transaction
˝ *_busy, true if the source must wait
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˝ If (∗_req)&&(!∗_busy),
the request is accepted

˝ If (∗_req)&&(∗_busy),
the request may not change, except on reset
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To prove:

˝ No data will be lost, no requests will be dropped
Assume all requests remain stable until accepted

˝ Only one source ever gets access at a time
Assert one busy line is always high

˝ Therefore, all requests go through . . . eventually
This is a natural consequence of the above. Don’t worry
about starvation here.
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Shall we try this with Wishbone?
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This request side is almost identical

˝ If (STB)&&(!STALL)

the request is accepted
˝ If (STB)&&(STALL)

the request must not change
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The difference is the acknowledgements

˝ The arbiter cannot change during an active transaction
˝ All requests get responses
˝ No response can be returned without a request
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Now, prove that exercise-07/wbpriarbiter.vhd works.

˝ Use both BMC and k-induction (mode prove)
˝ You’ll need to build fwb master.v properties
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The fwb slave.v properties will

˝ Assume a behaving master
˝ Assert a behaving slave
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You’ll write the fwb master.v properties

˝ Swapping inputs with outputs

– Port names need not change

˝ Swapping assumptions with assertions
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The magic is in how the files are connected

˝ If one interface is connected, both master and slave. . .

– Should see the same number of requests
– Should see the same number of acknowledgements
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The magic is in how the files are connected

˝ If one interface is connected, the other . . .

– Should not have made any successful requests
– Should not have received any acknowledgements
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˝ Design with multiple files
˝ They were each formally correct
˝ Problems?
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˝ Design with multiple files
˝ They were each formally correct
˝ Problems? Yes! In induction
˝ State variables needed to be formally synchronized (assert())
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Proving properties for many components together can quickly
get out of hand!
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When dealing with memory, ...

˝ Testing the entire memory is not required
˝ Testing an arbitrary value is

It’s time to discuss (∗ anyconst ∗) and (∗ anyseq ∗)

Objectives

˝ Understand what a free variable is
˝ Understand how (∗ anyconst ∗) and (∗ anyseq ∗) can be

used to create free variables
˝ Learn how you can use free variables to validate memory and

memory interfaces
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˝ (∗ anyconst ∗)

(∗ anyconst ∗) wire [ N´1:0] cval ;

– Can be anything
– Defined at the beginning of time
– Never changed

˝ (∗ anyseq ∗)

(∗ anyseq ∗) wire [ N´1:0] sval ;

– Can change from one timestep to the next

Both can still be constrained via assume() statements
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These properties can be used from within VHDL as well:

˝ These are VHDL attributes in Yosys
˝ anyconst

s i gna l cval : std_logic_vector (N´1 downto 0 ) ;

a t t r i bu te anyconst : bit ;
a t t r i bu te anyconst of cval : s i gna l i s ’ 1 ’ ;

˝ anyseq

s i gna l sval : std_logic_vector (N´1 downto 0 ) ;

a t t r i bu te anyseq : bit ;
a t t r i bu te anyseq of sval : s i gna l i s ’ 1 ’ ;
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How might you verify a memory with this?

(∗ anyconst ∗) wire [ AW´1:0] f_const_addr ;
reg [ DW´1:0] f_mem_value ;

// Handle w r i t e s
always @ ( posedge i_clk )
i f ( ( i_stb)&&(i_we)&&(i_addr == f_const_addr ) )

f_mem_value <= i_data ;

// Handle r e ad s
always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( i_stb ))&&(! $past ( i_we ) )

&&($past ( i_addr == f_const_addr ) ) )
as se r t ( o_data == f_mem_value ) ;
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Consider the specification of a prefetch

˝ The contract

always @ ( posedge i_clk )
i f ( ( o_valid)&&(o_pc == f_const_addr ) )

as se r t ( o_insn == f_const_data ) ;

˝ You’ll also need to assume a bus input

always @ ( posedge i_clk )
i f ( ( i_ack)&&(ackd_address == f_const_addr ) )

assume ( i_data == f_const_data ) ;
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How would our general rule apply here?

˝ Assume inputs, assert internal state and outputs
˝ Both (∗ anyconst ∗) and (∗ anyseq ∗) act like inputs
˝ You could have written

port ( . . . i_value : i n . . . ; . . . ) ;

always @ ( posedge i_clk )
assume ( i_value == $past ( i_value ) ) ;

for the same effect as (∗ anyconst ∗)

˝ assume() them therefore, and not assert()
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This works for a flash (or other ROM) controller too:

a t t r i bu te anyconst of f_addr : s i gna l i s ’ 1 ’ ;
a t t r i bu te anyconst of f_valid : s i gna l i s ’ 1 ’ ;

always @ (∗ )
i f ( ( o_wb_ack)&&(f_request_addr == f_addr ) )

as se r t ( o_wb_data == f_value ) ;

Don’t forget the corollary assumptions!

always @ (∗ )
i f ( f_request_addr == f_addr )

assume ( i_spi_miso
== f_data [ controller_state ] ) ;

. . . or something similar
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You can use this to build a serial port transmitter

a t t r i bu te anyseq of f_tx_start : s i gna l i s ’ 1 ’ ;
a t t r i bu te anyseq of f_tx_data : s i gna l i s ’ 1 ’ ;

always @ (∗ )
i f ( f_tx_busy )

assume ( ! f_tx_start ) ;

always @ ( posedge f_txclk )
i f ( f_tx_busy )

assume ( f_tx_data == $past ( f_tx_data ) ) ;

You can then

˝ Tie assertions to partially received data
˝ . . . and pass induction
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How would you use free variables to verify a cache
implementation?
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How would you use free variables to verify a cache
implementation?

Hint: you only need three properties for the cache contract
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˝ Proving simple modules is easy.
˝ What about large and complex ones?

It’s time to discus abstraction.
Objectives

˝ Understand what abstraction is
˝ Gain confidence in the idea of abstraction
˝ Understand how to reduce a design via abstraction
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Formally, if

AÑ C

then we can also say that

pABq Ñ C
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Shall we go over the proof?

AÑ C ñ  A_ C “ True

True or anything is still true, so

p A_ Cq _  B

Rearranging terms

 A_ B _ C

 pABq _ C

Expressing as an implication

pABq Ñ C

Q.E.D.!
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With every additional module,

˝ Formal verification becomes more difficult
˝ Complexity increases exponentially
˝ You only have so many hours and dollars

On the other hand,

˝ Anything you can simplify by abstraction . . .
˝ is one less thing you need to prove
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Suppose your state space looked like this

˝ It takes many transitions required to get to interesting states
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Suppose we added to this design . . .

˝ Some additional states, and
˝ Additional transitions

The real states and transitions must still remain
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If this new design still passes, then . . .

˝ Since the original design is a subset . . .
˝ The original design must also still pass

If done well, the new design will require less effort to prove
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Where would you start?
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Where would you start?

At the interfaces!
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Let’s consider a prefetch module as an example.

If you do this right,

˝ Any internally consistent Prefetch,
˝ that properly responds to the CPU, and
˝ interacts properly with the bus,
˝ must work!

Care to try a different prefetch approach?
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Suppose the prefetch was just a shell

It would still interact properly with

˝ The bus, and
˝ The CPU
˝ It just might not return values from the bus to the CPU
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Suppose the prefetch was just a shell

If the CPU still acted “correctly”

˝ With either the right, or the wrong instructions, then
˝ The CPU must act correctly with the right instructions
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Consider these statements:

˝

If
And
Then
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Consider these statements:

˝ Prefetch is bus master, interfaces w/CPU

If (Prefetch responds to CPU insn requests)
And (Prefetch produces the right instructions)
Then (The prefetch works within the design)
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Consider these statements:

˝ The CPU is just a wishbone master within a design

If (The CPU is valid bus master)
And (CPU properly executes instructions)
Then (CPU works within a design)
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Consider these statements:

˝ The ALU must return a calculated number

If (ALU returns a value when requested)
And (It is the right value)
Then (The ALU works within the design)
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Consider these statements:

˝ A flash device responds in 8-80 clocks

If (Bus master reads/responds to a request)
And (The response comes back in 8-80 clocks)
Then (The CPU can interact with a flash memory)
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Consider these statements:

˝ The divide must return a calculated number

If (Divide returns a value when requested)
And (It is the right value)
Then (The divide works within the design)



Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ Formal solvers break down when applied to multiplies

If (Multiply unit returns an answer N clocks later)
And (It is the right value)
Then (The multiply works within the design)
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Looking at the CPU again,

˝ Replace all the components with abstract shells
˝ . . . shells that might produce the same answers
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Let’s consider a fractional counter:

s i gna l r_count : unsigned (31 downto 0) := 0 ;
´́ ´́
process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
( o_pps , r_count ) <= resize ( r_count , 33) + 43 ;

end i f ;
end process ;

The problem with this counter

˝ It will take 100ˆ 10
6 clocks to roll over and set o_pps

˝ Formally checking 100ˆ 10
6 clocks is prohibitive

We’ll need a better way, or we’ll never deal with this
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How might we build an abstract counter?

˝ First, create an arbitrary counter increment

s i gna l increment : unsigned (31 downto 0)
:= to_unsigned ( 1 , 3 2 ) ;

a t t r i bu te anyseq of increment : s i gna l i s ’ 1 ’ ;
´́ ´́
process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
( o_pps , r_count ) <= resize ( r_count , 33)

+ increment ;
end i f ;

end process ;

rollover <= ´r_count ;

We’ll constrain this increment next
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How might we build an abstract counter?

˝ First, create an arbitrary counter increment
˝ Then constrain the arbitrary increment

always @ (∗ )
begin

assume ( increment > 0 ) ;
assume ( increment < { 2 ’h1 , 30 ’h0 } ) ;
i f ( rollover < 32 ’ d43 )

assume ( increment == 32 ’ d43 ) ;
e l s e

assume ( increment < rollover ) ;
end

The correct increment, 43, must be a possibility
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Will this work?

˝ Let’s try this to see!

always @ ( posedge i_clk )
i f ( f_past_valid )

as se r t ( r_count != $past ( r_count ) ) ;

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&(r_count < $past ( r_count ) ) )

as se r t ( o_pps ) ;
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How else might you use this?

˝ Bypassing the runup for an external peripheral
˝ Testing a real-time clock or date

Or . . . how about that CPU?
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Let’s modify this abstract counter

˝ Increment by one, rather than fractionally

Exercise Objectives:

˝ Prove a design works both with and without abstraction
˝ Gain some confidence using abstraction
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Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Build it so that . . .

always @ (∗ )
as se r t ( o_carry == ( r_count == 0 ) ) ;

// and

always @ ( posedge i_clk )
i f ( ( f_past_valid )&&(!$past(&r_count ) ) )

as se r t ( ! o_carry ) ;

˝ Prove that this abstracted counter works
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Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Prove that this abstracted counter works
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Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Prove that this abstracted counter works

Hints:

˝ &r_count must take place before r_count==0

˝ You cannot skip &r_count

˝ Neither can you skip r_count == 0
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This lesson is currently being revised, and will be released again
shortly
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The SymbiYosys option multiclock . . .

˝ Used to process systems with dissimilar clocks
˝ Examples

– A serial port, with a formally generated transmitter
coming from a different clock domain

– A SPI controller that needs both high speed and low
speed logic

Our Objective:

˝ To learn how to handle multiple clocks within a design

– (∗ gclk ∗)

– $stable, $changed
– $rose, $fell
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[ opt ions ]
mode prove

mult ic lock on

[ engines ]
smtbmc

[ s c r i p t ]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[ f i l e s ]
# f i l e l i s t
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[ opt ions ]
mode prove

mult ic lock on Multiple clocks require this line

[ engines ]
smtbmc

[ s c r i p t ]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[ f i l e s ]
# f i l e l i s t
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˝ (∗ gclk ∗)

Provides access to the global formal time-step
˝ $stable

True if a signal is stable (i.e. doesn’t change) with this clock.
Equivalent to A == $past(A)

˝ $changed

True if a signal has changed since the last clock tick.
Equivalent to A != $past(A)

˝ $rose

True if the signal rises on this formal time-step
This is very useful for positive edged clocks transitions
$rose(A) is equivalent to (A[0])&&(!$past(A[0]))

˝ $fell

True if a signal falls on this time-step, creating a negative
edge
$fell (A) is equivalent to (!A[0])&&($past(A[0]))
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˝ A global formal time step

(∗ gclk ∗) wire gbl_clk ;

˝ You can use this to describe clock properties

// Assume a s i n g l e c l o c k s i g n a l
//
reg f_last_clk ;

i n i t i a l f_last_clk = 0 ;
always @ ( posedge gbl_clk )
begin

f_last_clk <= ! f_last_clk ;
assume ( i_clk == f_last_clk ) ;

end
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always @ ( posedge gbl_clk )
begin

f_last_clk <= ! f_last_clk ;
assume ( i_clk == f_last_clk ) ;

end

f last clk

i clk



(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

184 / 285

˝ Used to gain access to the formal time-step

(∗ gclk ∗) wire gbl_clk ;

˝ You can use this to describe clock properties

// Assume two r e l a t e d c l o c k s i g n a l s
//
reg [ 2 : 0 ] f_clk_counter ;

i n i t i a l f_clk_counter = 0 ;
always @ ( posedge gbl_clk )
begin

f_clk_counter <= f_clk_counter + 1 ’b1 ;
assume ( i_clk_fast == f_clk_counter [ 0 ] ) ;
assume ( i_clk_slow == f_clk_counter [ 2 ] ) ;

end
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The clock logic on the last slide forces these two clocks to be in
sync
f clk counter 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

i clk fast

i clk slow
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˝ Used to gain access to the formal time-step
˝ You can use this to describe clock properties

// Assume two c l o ck s , same speed ,
// unknown con s t an t phase o f f s e t
(∗ gclk ∗) wire gbl_clk ;
(∗ anyconst ∗) wire [ 2 : 0 ] f_clk_offset ;

i n i t i a l f_clk_counter= 0 ;
always @ ( posedge gbl_clk )
begin

f_clk_counter <= f_clk_counter + 1 ’b1 ;
f_clk_two <= f_clk_counter

+ f_clk_offset ;
assume ( i_clk_one == f_clk_counter [ 2 ] ) ;
assume ( i_clk_two == f_clk_two [ 2 ] ) ;

end
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The formal tool will pick the phase offset between these two
generated clock waveforms
f clk counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i clk one

i clk two
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How might you describe two unrelated clocks?
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How might you describe two unrelated clocks?

(∗ gclk ∗) wire gbl_clk ;
(∗ anyconst ∗) wire [ 7 : 0 ] f_a_step ;
always @ (∗ )
assume ( ( f_a_step > 0) &&(f_a_step [ 7 ] == 1 ’b0 ) ) ;

always @ ( posedge gbl_clk )
begin

f_a_counter <= f_a_counter + f_a_step ;

assume ( i_clk_a == f_a_counter [ 7 ] ) ;
end

˝ The (∗ anyconst ∗) register may take on any constant value
˝ You can repeat this logic for the second clock.
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The timing relationship between these two clocks can be
anything

˝ Each clock can have an arbitrary frequency
˝ Each clock can have an arbitrary phase

Here’s a theoretical example trace

i_clk_a

i_clk_b

Don’t be surprised by the appearance of phase noise

Bonus: The trace above isn’t realistic. Why not?
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Synchronous logic has some requirements

˝ Inputs should only change on a clock edge
They should be stable otherwise

˝ $rose(i_clk) can be used to express this

Here’s an example using $rose(i_clk) . . .

always @ ( posedge gbl_clk )
i f ( ! $rose ( i_clk ) )

assume ( i_input == $past ( i_input ) ) ;
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$fell is like $rose, only it describes a negative edge

i_clk

$rose(i_clk)

$fell (i_clk)
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Let’s go back to the synchronous logic requirements

˝ Inputs only change on clock edges
˝ $rose(i_clk) and $fell (i_clk) can be used to express this
˝ Let’s try this out

Would this work?

always @ ( posedge gbl_clk )
i f ( ! $rose ( i_clk ) )

as se r t ( i_input == $past ( i_input ) ) ;
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Let’s go back to the synchronous logic requirements

˝ Inputs only change on clock edges
˝ $rose(i_clk) and $fell (i_clk) can be used to express this
˝ Let’s try this out

Would this work?

always @ ( posedge gbl_clk )
i f ( ! $rose ( i_clk ) )

as se r t ( i_input == $past ( i_input ) ) ;

˝ No. The general rule hasn’t changed
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Could we do it this way?

always @ ( posedge gbl_clk )
i f ( $ f e l l ( i_clk ) )

as se r t ( state == $past ( state ) ) ;
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Could we do it this way?

always @ ( posedge gbl_clk )
i f ( $ f e l l ( i_clk ) )

as se r t ( state == $past ( state ) ) ;

˝ No, this doesn’t work either

i_clk

state Stable Unconstrained Stable Unconstrained

$fell (i_clk)
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Is this equivalent?

always @ ( posedge gbl_clk )
i f ( ! $past ( i_clk ) )

as se r t ( state == $past ( state ) ) ;
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Is this equivalent?

always @ ( posedge gbl_clk )
i f ( ! $past ( i_clk ) )

as se r t ( state == $past ( state ) ) ;

˝ Why not?

i_clk

state Unconstrained Stable Uncon No change Uncon

!$past(i_clk)
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This fixes our problems. Will this work?

always @ ( posedge gbl_clk )
i f ( ! $rose ( i_clk ) )

as se r t ( state == $past ( state ) ) ;
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This fixes our problems. Will this work?

always @ ( posedge gbl_clk )
i f ( ! $rose ( i_clk ) )

as se r t ( state == $past ( state ) ) ;

˝ Not quite. Can you see the problem?
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˝ State/outputs should be clock synchronous

always @ ( posedge gbl_clk )
i f ( ( f_past_valid )&&(!$rose ( i_clk ) )

as se r t ( state == $past ( state ) ) ;

˝ With f_past_valid this works

i_clk

state Stable Stable Stable

f_past_valid

!$rose(i_clk)

˝ $rose requires a clock, such as
always @(posedge gbl_clk)
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Describes a signal which has not changed

always @ ( posedge gbl_clk )
i f ( ( f_past_valid )&&(! $rose ( i_clk ) ) )

as se r t ( $stab le ( state ) ) ;

˝ Requires a clock edge

always @(posedge gbl_clk)

always @(posedge i_clk)

˝ This is basically the same as state == $past(state)
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Caution: $stable(X) might still change between clock edges

always @ ( posedge i_clk )
assume ( $stab le ( i_value ) ) ;

The waveform below would satisfy the assumption above

i_clk

i_value 0 1 0 1 0 1 0 1 0 1 0

$past(i_value) 0 0 0

$stable(i_value)

The key to understanding what’s going on is to realize . . .

˝ The assumption is only evaluated on @(posedge i_clk)

˝ $past(i_value) is only sampled @(posedge i_clk)

˝ . . . and not on the formal (∗ gclk ∗) time step.
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˝ Most logic doesn’t need the multiclock option
˝ To help with logic that might need it, I use a parameter

parameter [ 0 : 0 ] F_OPT_CLK2FFLOGIC = 1 ’b0 ;

generate i f ( F_OPT_CLK2FFLOGIC )
begin

(∗ gclk ∗) wire gbl_clk ;

always @ ( posedge gbl_clk )
i f ( ( f_past_valid )&&(!$rose ( i_clk ) ) )
begin

assume ( $stab le ( i_axi_awready ) ) ;
assume ( $stab le ( i_axi_wready ) ) ;
// . . .

end
end endgenerate
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o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?
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o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

i n i t i a l a s se r t ( o_CS_n ) ;
i n i t i a l a s se r t ( o_SCK ) ;

always @ (∗ )
i f ( ! o_SCK )

as se r t ( ! o_CS_n ) ;
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o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

always @ ( posedge gbl_clk )
i f ( ( f_past_valid )

&&(($rose ( o_CS_n ) ) | | ( $ f e l l ( o_CS_n ) ) ) )
as se r t ( ( o_SCK)&&($stab le ( o_SCK ) ) ) ;
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o CS n

o SCK

o MOSI

i MISO

˝ How would you describe o_MOSI?
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o CS n

o SCK

o MOSI

i MISO

˝ How would you describe o_MOSI?

always @ ( posedge gbl_clk )
i f ( ( f_past_valid )&&(!o_CS_n )&&(! $ f e l l ( o_SCK ) ) )

as se r t ( $stab le ( o_MOSI ) ) ;
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o CS n

o SCK

o MOSI

i MISO

˝ How would you describe i_MISO?
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o CS n

o SCK

o MOSI

i MISO

˝ How would you describe i_MISO?

always @ ( posedge gbl_clk )
i f ( ( ! o_CS_n)&&(o_SCK ) )

assume ( $stab le ( i_MISO ) ) ;



Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

204 / 285

o CS n

o SCK

o MOSI

i MISO

˝ Should the i_MISO be able to change more than once per
clock?
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˝ A little logic will force i_MISO to have only one transition per
clock

always @ ( posedge gbl_clk )
i f ( ( o_CS_n ) | | ( o_SCK ) )

f_chgd <= 1 ’b0 ;
e l s e i f ( i_MISO != $past ( i_MISO ) )

f_chgd <= 1 ’b1 ;

always @ ( posedge gbl_clk )
i f ( ( f_past_valid)&&(f_chgd ) )

assume ( $stab le ( i_MISO ) ) ;

˝ How would we force exactly 8 o_SCK clocks?
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˝ Forcing exactly 8 clocks

always @ ( posedge gbl_clk )
i f ( o_CS_n )

f_spi_bits <= 0 ;
e l s e i f ( $rose ( o_SCK ) )

f_spi_bits <= f_spi_bits + 1 ’b1 ;

always @ ( posedge gbl_clk )
i f ( ( f_past_valid)&&($rose ( o_CS_n ) ) )

as se r t ( f_spi_bits == 8 ) ;

˝ Don’t forget the induction requirement

always @ (∗ )
as se r t ( f_spi_bits <= 8 ) ;
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Three exercises, chose one to verify:

1. Input serdes
exercises-09/iserdes.vhd

2. Clock gate
exercises-10/clkgate.vhd

3. Clock Switch
exercises-11/clkswitch.vhd
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Getting a SERDES right is a good example of multiple clocks

i fast clk

i pin

i slow clk

o word 0x0b
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Getting a SERDES right is a good example of multiple clocks

˝ Two clocks, one fast and one slow

Clocks must be synchronous
$rose(slow_clk) implies $rose(fast_clk)

˝ exercise-09/ Contains the file iserdes.v
˝ Can you formally verify that it works?
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Be aware of the asynchronous reset signal!

i areset n

i fast clk

i pin

i slow clk

o word Prior value RESET RESET

˝ Can be asserted at any time
˝ Can only be de-asserted on $rose(i_slow_clk)

˝ assume() these properties, since the reset is an input
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The goal: a clock that can be gated, that doesn’t glitch

˝ exercise-10/ Contains the file clkgate.vhd
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The goal: a clock that can be gated, that doesn’t glitch

i clk

i en

o clk
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The goal: a clock that can be gated, that doesn’t glitch

˝ One clock, one unrelated enable
˝ Prove that the output clock

– is always high for the full width, but
– . . . never longer.
– For any clock rate

See exercise-10/clkgate.v
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Hints:

˝ The output clock should only rise if the incoming clock rises
˝ The output clock should only fall if the incoming clock fall
˝ If the output clock is ever high, it should always fall with the

incoming clock

Be aware of the reset! The output clock might fall mid-clock
period due to the asynchronous reset.
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Goal: To safely switch from one clock frequency to another



Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

216 / 285

Goal: To safely switch from one clock frequency to another

˝ Inputs

– Two arbitrary clocks
– One select line

Prove that the output clock

˝ Is always high (or low) for at least the duration of one of the
clocks

˝ Doesn’t stop

You may need to constrain the select line.



Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

217 / 285

Hints:

˝ You may assume the reset is only ever initially true
˝ Only one set of FF’s should ever change at any time
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The cover element is used to make certain something remains
possible

˝ BMC and induction test safety properties
They prove that something will not happen

˝ Cover tests a liveness property
It proves that something may happen

Objectives

˝ Understand why cover is important
˝ Understand how to use cover
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Personal examples:

˝ Forgot to set f_past_valid to one
Many assertions were ignored

˝ Av to WB bridge, passed FV, but couldn’t handle writes
˝ Error analysis

The simulation trace doesn’t make sense. Can it be
reproduced?

˝ As an anti-assertion
Can this situation actually happen?

What is cover good for? Catching the careless assumption!
What else? Ad hoc simulation traces!
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Cover is more like BMC than Induction is

˝ BMC

˝ Cover

˝ BMC searches for failures
˝ Cover searches for a success

Formally, we might say . . .

˝ BMC + k-Induction: proof for all
@assume()ñ @assert()

˝ Cover: there exists one
@assume()ñ Dcover()
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Just like an assumption or an assertion

// Make s u r e a w r i t e i s p o s s i b l e
always @ ( posedge i_clk )
cover ( ( o_wb_stb )&&(!i_wb_stall)&&(o_wb_we ) ) ;

// Or

// What happens when a bus c y c l e i s abo r t ed ?
always @ ( posedge i_clk )
i f ( i_reset )

cover ( ( o_wb_cyc)&&(f_wb_outstanding >0)) ;

Well, almost but not quite.
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Assert and cover handle surrounding logic differently

˝ Assert logic

always @ ( posedge i_clk )
i f (A )

as se r t (B ) ;

is equivalent to,

always @ ( posedge i_clk )
as se r t ( ( ! A ) | | (B ) ) ;

This is not true of cover.
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Assert and cover handle surrounding logic differently

˝ Assert logic
˝ Cover logic

always @ ( posedge i_clk )
i f (A )

cover (B ) ;

is equivalent to,

always @ ( posedge i_clk )
cover ( (A ) && (B ) ) ;

// NOT the same as
// a s s e r t ( ( !A) | | (B) ) ;
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˝ Goal is to prove certain state’s are reachable
˝ Prover solves for example traces
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The SymbiYosys script for cover needs to change as well

˝ SymbiYosys needs the option: mode cover

˝ Produces one trace per cover() statement
. . . or fail
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[ opt ions ]
mode cover

depth 40
append 20

[ engines ]
smtbmc

[ s c r i p t ]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[ f i l e s ]
# f i l e l i s t
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[ opt ions ]
mode cover Run a coverage analysis
depth 40
append 20

[ engines ]
smtbmc

[ s c r i p t ]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[ f i l e s ]
# f i l e l i s t
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[ opt ions ]
mode cover

depth 40 How far to look for a covered state
append 20

[ engines ]
smtbmc

[ s c r i p t ]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[ f i l e s ]
# f i l e l i s t
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[ opt ions ]
mode cover

depth 40
append 20 Follow each trace with 20 extra clocks

[ engines ]
smtbmc

[ s c r i p t ]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[ f i l e s ]
# f i l e l i s t
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[ tasks ]
prf

cvr

[ opt ions ]
prf : mode prove

cvr : mode cover

depth 40

# . . .
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[ tasks ]
prf Run two tasks: prf and cvr
cvr

[ opt ions ]
prf : mode prove

cvr : mode cover

depth 40

# . . .
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[ tasks ]
prf

cvr

[ opt ions ]
prf : mode prove The prf tasks runs induction
cvr : mode cover

depth 40

# . . .
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[ tasks ]
prf

cvr

[ opt ions ]
prf : mode prove

cvr : mode cover The cvr tasks runs in cover mode
depth 40

# . . .
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[ tasks ]
prf

cvr

[ opt ions ]
prf : mode prove

cvr : mode cover

depth 40 The same depth can apply to both

# . . .
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[ tasks ]
prf

cvr

[ opt ions ]
prf : mode prove

cvr : mode cover

depth 40

# . . .

% sby -f sbyfil.sby now runs both modes
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[ tasks ]
prf

cvr

[ opt ions ]
prf : mode prove

cvr : mode cover

depth 40

# . . .

% sby -f sbyfil.sby cvr will run the cover mode alone
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Two basic types of cover failures

1. Covered state is unreachable
No VCD file will be generated upon failure

2. Covered state is reachable, but only by breaking assertions
VCD file will be generated
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Consider a CPU I-cache:

always @ ( posedge i_clk )
cover ( o_valid ) ;

With no other formal logic, what will this trace look like?

˝ CPU must provide a PC address
˝ Design must fill the appropriate cache line
˝ Design returns an item from that cache line

That’s a lot of trace for two lines of HDL!
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Consider a Flash controller:

always @ ( posedge i_clk )
cover ( o_wb_ack ) ;

With no other formal logic, what will this trace look like?
The controller must,

˝ Initialize the flash device
˝ Accept a bus request
˝ Request a read from the flash
˝ Accumulate the result to return on the bus
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Consider a Memory Management Unit (MMU):

always @ ( posedge i_clk )
cover ( o_wb_ack ) ;

The MMU must,

˝ Be told a TLB entry
˝ Accept a bus request
˝ Look the request up in the TLB
˝ Forward the modified request downstream
˝ Wait for a return
˝ Forward the value returned upstream
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How about an SDRAM controller?

always @ ( posedge i_clk )
cover ( o_wb_ack ) ;

The controller must,

˝ Initialize the SDRAM
˝ Accept a bus request
˝ Activate a row on a bank
˝ Issue a read (or write) command from that row
˝ Wait for a return value
˝ Return the result
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Remember our counter?

s i gna l counts : unsigned (15 downto 0)
:= to_unsigned ( 0 , 1 6 ) ;

´́ ´́ ´
process ( i_clk )
begin

i f ( rising_edge ( i_clk ) ) then
i f ( ( i_start_signal = ’1 ’ )

and (0 = counts ) ) then
counts <= to_unsigned ( MAX_AMOUNT´1, 1 6 ) ;

e l s e
counts <= counts ´ 1 ;

end i f ;
end i f ;

end process ;

o_busy <= ’1 ’ when (0 = counts ) e l s e ’ 0 ’ ;
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Let’s add some cover statements. . .

// T r a n s i t i o n to busy
always @ ( posedge i_clk )
i f ( ( f_past_valid )&&(!$past ( o_busy ) ) )

cover ( o_busy ) ;

// T r a n s i t i o n back to i d l e
always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past ( o_busy ) ) )

cover ( ! o_busy ) ;

// Mid´c y c l e
always @ ( posedge i_clk )

cover ( counter == 3 ) ;

Will SymbiYosys find traces?
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How about now?

always @ ( posedge i_clk )
cover ( ( o_busy)&&(counter == 0 ) ) ;
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How about now?

always @ ( posedge i_clk )
cover ( ( o_busy)&&(counter == 0 ) ) ;

Or this one,

always @ ( posedge i_clk )
cover ( counter == MAX_AMOUNT ) ;

Will these succeed?
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How about now?

always @ ( posedge i_clk )
cover ( ( o_busy)&&(counter == 0 ) ) ;

Or this one,

always @ ( posedge i_clk )
cover ( counter == MAX_AMOUNT ) ;

Will these succeed? No. Both will fail

˝ These are outside the reachable state space
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What if the state is unreachable?

// Keep the coun t e r from ev e r s t a r t i n g
always @ (∗ )

assume ( ! i_start_signal ) ;

always @ ( posedge i_clk )
cover ( counter != 0 ) ;

Will this succeed?
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What if the state is unreachable?

// Keep the coun t e r from ev e r s t a r t i n g
always @ (∗ )

assume ( ! i_start_signal ) ;

always @ ( posedge i_clk )
cover ( counter != 0 ) ;

Will this succeed? No. This will fail with no trace.

˝ If i_start_signal is never true, the cover cannot be reached
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What if an assertion needs to be violated?

always @ (∗ )
as se r t ( counter != 10 ) ;

always @ ( posedge i_clk )
cover ( counter == 4 ) ;

What will happen here?
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What if an assertion needs to be violated?

always @ (∗ )
as se r t ( counter != 10 ) ;

always @ ( posedge i_clk )
cover ( counter == 4 ) ;

What will happen here?

˝ Cover statement is reachable
˝ But requires an assertion failure, so a trace is generated
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Covering the clock switch

˝ Shows the clock switching from fast to slow,
˝ and again from slow to fast
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Return to your Wishbone arbiter. Let’s cover four cases:

1. Cover both A and B receiving the bus
2. Cover how B will get the bus after A gets an

acknowledgement
3. Cover how A will get the bus after B gets an

acknowledgement
4. Add to the last cover

˝ B must request while A still holds the bus

Plot and examine traces for each cases. Do they look right?

˝ If everything works, the first case showing both A and B
receiving the bus will FAIL

˝ No trace is needed from that case
˝ After getting this failure, you may want to remove it from

your cover checks
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Notice what we just proved:

1. The arbiter will allow both sources to master the bus
2. The arbiter will transition from one source to another
3. The arbiter won’t starve A or B

This wasn’t possible with just the safety properties (assert
statements)
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When should you use cover?
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SystemVerilog has some amazing formal properties

˝ property can be assumed or asserted
By rewriting our assert’s and assume’s as properties, we can
then control when they are asserted or assumed better.

˝ bind formal properties to a subset of your design
Allows us to (finally) separate the properties from the module
they support

˝ sequence – A standard property description language

Objectives

˝ Learn the basics of SystemVerilog Assertions
˝ Gain confidence with yosys+verific
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Much of what we’ve written can easily be rewritten in SVA

always @ (∗ )
i f (A )

as se r t (B ) ;

can be rewritten as,

as se r t property (@ ( posedge i_clk )
A |´> B ) ;

Note that this is now a clocked assertion, but otherwise it’s
equivalent
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Much of what we’ve written can easily be rewritten in SVA

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past (A ) ) )

as se r t (B ) ;

Can be rewritten as,

as se r t property (@ ( posedge i_clk )
A |=> B ) ;
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Much of what we’ve written can easily be rewritten in SVA

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past (A ) ) )

as se r t (B ) ;

Can be rewritten as,

as se r t property (@ ( posedge i_clk )
A |=> B ) ;

˝ Read this as A implies B on the next clock tick.
˝ No f_past_valid required anymore. This is a statement

about the next clock tick, not the last one.

These equivalencies apply to assume() as well
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You can also declare properties:

property SIMPLE_PROPERTY ;
@ ( posedge i_clk ) a |=> b ;

endproperty

as se r t property ( SIMPLE_PROPERTY ) ;

This would be the same as

always @ ( posedge i_clk )
i f ( ( f_past_valid)&&($past (a ) ) )

as se r t (b ) ;
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You could also do something like:

parameter [ 0 : 0 ] F_SUBMODULE = 1 ’b0 ;

generate i f ( F_SUBMODULE )
begin

assume property ( INPUT_PROP ) ;
end e l s e begin

as se r t property ( INPUT_PROP ) ;
end endgenerate

as se r t property ( LOCAL_PROP ) ;
as se r t property ( OUTPUT_PROP ) ;

This would work quite nicely for a bus property file
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Properties can also accept parameters

property IMPLIES (a , b ) ;
@ ( posedge i_clk )
a |´> b ;

endproperty

as se r t property ( IMPLIES (x , y ) ) ;
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Properties can also accept parameters

property IMPLIES_NEXT (a , b ) ;
@ ( posedge i_clk ) a |=> b ;

endproperty

as se r t property ( IMPLIES_NEXT (x , y ) ) ;

Remember, if you want to use |=>, $past, etc., you need to
define a clock.
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Getting tired of writing @(posedge i_clk)?

˝ You can set a default clock

de fau l t c lock ing @ ( posedge i_clk ) ;
endclocking

Assumes i_clk if no clock is given.
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Getting tired of writing @(posedge i_clk)?

˝ You can set a default clock
˝ You can set a default clock within a given block

c lock ing @ ( posedge i_clk ) ;
// Your p r o p e r t i e s can go he r e
// As wi th a s s e r t , assume ,
// sequence , e t c .

endclocking

Assumes i_clk for all of the properties within the clocking
block.
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So far with properties,

˝ We haven’t done anything really all that new.
˝ We’ve just rewritten what we’ve done before in a new form.

Sequences are something new
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With sequences, you can

˝ Specify a series of actions

sequence EXAMPLE ;
@ ( posedge i_clk ) a ##1 b ##1 c ##1 d ;

endsequence

In this example, b always follows a by one clock, c follows b,
and d follows c
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With sequences, you can

˝ Specify a series of actions, separated by some number of
clocks

sequence EXAMPLE ;
@ ( posedge i_clk ) a ##2 b ##5 c ;

endsequence

In this example, b always follows a two clocks later, and c
follows five clocks after b
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With sequences, you can

˝ Specify a series of predicates, separated in time
˝ Can express range(s) of repeated values

sequence EXAMPLE ;
@ ( posedge i_clk ) b [ ∗ 2 : 3 ] ##1 c ;

endsequence
// i s e q u i v a l e n t to . . .
sequence EXAMPLE_A_2x ; // 2x

@ ( posedge i_clk ) b ##1 b ##1 c ;
endsequence
// or
sequence EXAMPLE_A_3x ; // 3x

@ ( posedge i_clk ) b ##1 b ##1 b ##1 c ;
endsequence
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With sequences, you can

˝ Specify a series of predicates, separated in time
˝ Can express range(s) of repeated values

– [∗0:M] Predicate may be skipped
– [∗N:M] specifies from N to M repeats
– [∗N:$] Repeats at least N times, with no maximum

Ranges can include empty sequences, such as ##[∗0:4]

˝ Compose multiple sequences together

– AND, seq_1 and seq_2

– OR, seq_1 or seq_2

– NOT, not seq
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The and and intersect operators are very similar

˝ and is only true if both sequences are true
˝ intersect is only true if both sequences are true and have the

same length
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˝ Throughout

sequence A ;
@ ( posedge i_clk )
( EXP ) [ ∗ 0 : $ ] i n t e r s e c t SEQ ;

endsequence

is equivalent to

sequence B ;
@ ( posedge i_clk )
( EXP ) throughout SEQ ;

endsequence

The EXP expression must be true from now until SEQ ends



Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

260 / 285

˝ Throughout
˝ Until

property A ;
@ ( posedge i_clk )
(E1 ) [ ∗ 0 : $ ] ##1 (E2 ) ;

endproperty

is equivalent to

property B ;
@ ( posedge i_clk )
(E1 ) un t i l E2 ;

endproperty

˝ until can only be used in a property, not within a sequence
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˝ Throughout
˝ Until

property A ;
@ ( posedge i_clk )
(E1 ) [ ∗ 0 : $ ] ##1 (E2 ) ;

endproperty

is equivalent to

property B ;
@ ( posedge i_clk )
(E1 ) un t i l E2 ;

endproperty

˝ until can only be used in a property, not within a sequence

˝ There is an ugly subtlety here

– Must E2 ever take place?
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˝ Throughout
˝ Until
˝ Within

sequence A ;
@ ( posedge i_clk )
( 1 [ ∗ 0 : $ ] ##1 S1 ##1 1 [ ∗ 0 : $ ] )

i n t e r s e c t S2 ;
endsequence

is equivalent to

sequence B ;
@ ( posedge i_clk )
(S1 ) with in S2 ;

endsequence
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Properties can reference sequences

˝ Directly

as se r t property ( seq ) ;
as se r t property ( expr |´> seq ) ;

˝ Implication: sequences can imply properties

as se r t property ( seq |´> some_other_property ) ;
as se r t property ( seq |=> another_property ) ;
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Properties can include . . .

˝ if statements

as se r t property ( i f (A ) P1 e l s e P2 ) ;

˝ not, and, or even or statements

as se r t property ( not P1 ) ;
as se r t property (P1 and P2 ) ;
as se r t property (P1 or P2 ) ;
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A bus request will not change until it is accepted

property BUS_REQUEST_HOLD ;
@ ( posedge i_clk )
( STB)&&(STALL )
|=> ( STB)&&($stab le ( REQUEST ) ) ;

endproperty

as se r t property ( BUS_REQUEST_HOLD ) ;
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A request persists until it is accepted

sequence BUS_REQUEST ;
@ ( posedge i_clk )
// Repeat up to MAX STALL c l k s
( STB)&&(STALL ) [ ∗ 0 : MAX_STALL ]
##1 ( STB )&&(!STALL ) ;

endsequence

as se r t property ( STB |´> BUS_REQUEST ) ;

You no longer need to count stalls yourself.
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A request persists until it is accepted

sequence BUS_REQUEST ;
@ ( posedge i_clk )
// Repeat up to MAX STALL c l k s
( STB)&&(STALL ) [ ∗ 0 : MAX_STALL ]
##1 ( STB )&&(!STALL ) ;

endsequence

as se r t property ( STB |´> BUS_REQUEST ) ;

You no longer need to count stalls yourself.
Could we do this with an until statement?
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A request persists until it is accepted

sequence BUS_REQUEST ;
@ ( posedge i_clk )
( STB)&&(STALL ) un t i l ( STB )&&(!STALL ) ;

endsequence

as se r t property ( STB |´> BUS_REQUEST ) ;

What is the difference?
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A request persists until it is accepted

sequence BUS_REQUEST ;
@ ( posedge i_clk )
( STB)&&(STALL ) un t i l ( STB )&&(!STALL ) ;

endsequence

as se r t property ( STB |´> BUS_REQUEST ) ;

What is the difference? The until statement goes forever, our
prior example was limited to MAX_STALL clock cycles.
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A request persists until it is accepted

sequence BUS_REQUEST ;
@ ( posedge i_clk )
( STB)&&(STALL ) un t i l ( STB )&&(!STALL ) ;

endsequence

as se r t property ( STB |´> BUS_REQUEST ) ;

What is the difference?

But . . . what happens if RESET is asserted?
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A property can be conditionally disabled

sequence BUS_REQUEST ;
// Repeat up to MAX STALL c l k s
( STB)&&(STALL ) [ ∗ 0 : MAX_STALL ]
##1 ( STB )&&(!STALL ) ;

endsequence

as se r t property (
@ ( posedge i_clk )
d i sab l e iff ( i_reset )
STB |´> BUS_REQUEST ) ;

The assertion will no longer fail if i_reset clears the request
What if the request is aborted?
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A property can be conditionally disabled

sequence BUS_REQUEST ;
@ ( posedge i_clk )
// Repeat up to MAX STALL c l k s
( STB)&&(STALL ) [ ∗ 0 : MAX_STALL ]
##1 ( STB )&&(!STALL ) ;

endsequence

as se r t property (
@ ( posedge i_clk )
d i sab l e iff ( ( i_reset ) | | ( ! CYC ) )
STB |´> BUS_REQUEST ) ;

Will this work?
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A property can be conditionally disabled

sequence BUS_REQUEST ;
@ ( posedge i_clk )
// Repeat up to MAX STALL c l k s
( STB)&&(STALL ) [ ∗ 0 : MAX_STALL ]
##1 ( STB )&&(!STALL ) ;

endsequence

as se r t property (
@ ( posedge i_clk )
d i sab l e iff ( ( i_reset ) | | ( ! CYC ) )
STB |´> BUS_REQUEST ) ;

Will this work? Yes!
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Some peripherals will only ever accept one request

sequence SINGLE_ACK ( MAX_DELAY ) ;
@ ( posedge i_clk )
( ! ACK)&&(STALL ) [ ∗ 0 : MAX_DELAY ]
##1 ( ACK )&&(!STALL ) ;

endsequence

as se r t property (
d i sab l e iff ( ( i_reset ) | | ( ! CYC ) )
( STB )&&(!STALL ) |=> SINGLE_ACK ( 3 2 ) ;
) ;

This peripheral will

˝ Stall up to 32 clocks following any accepted request, until it
˝ Acknowledges the request, and
˝ Releases the bus on the same cycle
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Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL ( DELAY ) ;
@ ( posedge i_clk )
d i sab l e iff ( ( i_reset ) | | ( ! CYC ) )
( STB ) |´> ##[∗DELAY ] ( ACK ) ;

endproperty

as se r t property ( NEVER_STALL ( DELAY )
and ( ! STALL ) ) ;

This is illegal. Can you spot the bug?



Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

270 / 285

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL ( DELAY ) ;
@ ( posedge i_clk )
d i sab l e iff ( ( i_reset ) | | ( ! CYC ) )
( STB ) |´> ##[∗DELAY ] ( ACK ) ;

endproperty

as se r t property ( NEVER_STALL ( DELAY )
and ( ! STALL ) ) ;

This is illegal. Can you spot the bug? What logic does the
disable iff apply to?
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Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL ( DELAY ) ;
@ ( posedge i_clk )
d i sab l e iff ( ( i_reset ) | | ( ! CYC ) )
( STB ) |´> ##[∗DELAY ] ( ACK ) ;

endproperty

as se r t property ( NEVER_STALL ( DELAY ) ) ;
as se r t property ( ! STALL ) ;

This is valid
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Cannot ACK or ERR when no request is pending

as se r t property ( @ ( posedge i_clk )
( ( ! i_CYC ) | | ( i_reset ) )
##1 ( ( ! i_CYC ) | | ( i_reset ) )
|´> ( ( ! o_ACK )&&(!o_ERR ) ) ;

Or as we did it before

always @ ( posedge i_clk )
i f ( ( f_past_valid )

&&(($past ( i_reset ) ) | | ( ! $past ( i_CYC ) ) )
&&((i_reset ) | | ( ! i_CYC ) )
as se r t ( ( ! o_ACK )&&(!o_ERR ) ) ;

Which is simpler to understand?
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Let’s look at an serial port transmitter example.
A baud interval is CKS clocks . . .

˝ Output data is constant
˝ Logic doesn’t change state
˝ Internal shift register value is known
˝ Ends with zero_baud_counter

sequence BAUD_INTERVAL (CKS , DAT , SR , ST ) ;
( ( o_uart_tx == DAT)&&(state == ST )

&&(lcl_data == SR )
&&(!zero_baud_counter ) ) [ ∗ ( CKS´1)]

##1 ( o_uart_tx == DAT)&&(state == ST )
&&(lcl_data == SR )
&&(zero_baud_counter ) )

endsequence
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A byte consists of 10 Baud intervals

sequence SEND (CKS , DATA ) ;
BAUD_INTERVAL (CKS , 1 ’b0 , DATA , 4 ’h0 )
##1 BAUD_INTERVAL (CKS , DATA [ 0 ] ,

{{ (1){1 ’ b1 }} , DATA [ 7 : 1 ] , 4 ’h1 )
##1 BAUD_INTERVAL (CKS , DATA [ 1 ] ,

{{ (2){1 ’ b1 }} , DATA [ 7 : 2 ] , 4 ’h2 )
//
##1 BAUD_INTERVAL (CKS , DATA [ 6 ] ,

{{ (7){1 ’ b1 }} , DATA [ 7 ] , 4 ’h7 )
##1 BAUD_INTERVAL (CKS , DATA [ 7 ] ,

7 ’hff , DATA [ 7 ] , 4 ’h8 )
##1 BAUD_INTERVAL (CKS , 1 ’b1 , 8 ’hff , 4 ’h9 ) ;

endsequence
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Transmitting a byte requires

always @ ( posedge i_clk )
i f ( ( i_wr )&&(!o_busy ) )

fsv_data <= i_data ;

as se r t property (@ ( posedge i_clk )
( i_wr )&&(!o_busy )
|=> ( ( o_busy ) throughout

SEND ( CLOCKS_PER_BAUD , fsv_data ) )
##1 ( ( ! o_busy)&&(o_uart_tx )

&&(zero_baud_counter ) ) ;

˝ A transmit request is received
˝ The data is sent
˝ The controller returns to idle
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Transmitting a byte requires

as se r t property (@ ( posedge i_clk )
( i_wr )&&(!o_busy )
|=> ( ( o_busy ) throughout

SEND ( CLOCKS_PER_BAUD , fsv_data ) )
##1 ( ( ! o_busy)&&(o_uart_tx )

&&(zero_baud_counter ) ) ;

Make sure . . .

˝ The sequence has a defined beginning
Only ever triggered once at a time

˝ Doesn’t reference changing data
˝ throughout is within parenthesis
˝ You tie all relevant state information together
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SystemVerilog Concurrent Assertions . . .

˝ can be very powerful
˝ can be very confusing
˝ can be used with immediate assertions

You can keep using the simpler property form we’ve been
using
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Let’s formally verify a synchronous FIFO

ent i t y sfifo i s
gener ic (BW : natural := 8 ;

LGFLEN : natural := 4 ) ;

port ( i_clk , i_reset : i n std_logic ;
´́ The incoming ( w r i t e ) i n t e r f a c e
i_wr : i n std_logic ;
i_data : i n std_logic_vector (BW´1 downto 0 ) ;
o_full : out std_logic := ’ 0 ’ ;
´́ The outgo ing ( read ) i n t e r f a c e
i_rd : i n std_logic ;
o_data : out std_logic_vector (BW´1 downto 0 ) ;
o_empty : out std_logic := ’ 1 ’ ;
o_err : out std_logic := ’ 0 ’ ) ;

end ent i t y sfifo ;
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Let’s formally verify a synchronous FIFO

arch i tec tu re behavior of sfifo i s
constant FLEN : natural := 2 ∗∗ LGFLEN ;

type data_type i s
std_logic_vetor (BW´1 downto 0 ) ;

type mem_type i s
ar ray (FLEN´1 downto 0) of data_type ;

type ptr_type i s
unsigned ( LGFLEN downto 0 ) ;

s i gna l mem : mem_type ;

s i gna l r_first : ptr_type

:= to_unsigned (0 , LGFLEN+1);

See the problem?
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Let’s formally verify a synchronous FIFO

arch i tec tu re behavior of sfifo i s
constant FLEN : natural := 2 ∗∗ LGFLEN ;

type data_type i s
std_logic_vetor (BW´1 downto 0 ) ;

type mem_type i s
ar ray (FLEN´1 downto 0) of data_type ;

type ptr_type i s
unsigned ( LGFLEN downto 0 ) ;

s i gna l mem : mem_type ;

s i gna l r_first : ptr_type

:= to_unsigned (0 , LGFLEN+1);

See the problem? You can’t pass memories through ports!
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How will you pass the memory to the formal tool?

˝ You might pass an arbitrary address and value instead

s i gna l test_address : ptr_type ;
a t t r i bu te anyconst of test_address

: s i gna l i s ’ 1 ’ ;
s i gna l test_value : data_type ;

´́ ´́
test_value <= mem ( to_integer ( unsigned ( ´́ ´́

test_address ( LGFLEN´1 downto 0 ) ) ) ) ;
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Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?
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Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty
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Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
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Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
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Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
˝ The two outputs, o_empty and o_full, should properly reflect

the size of the FIFO

– o_empty means the FIFO is currently empty
– o_full means the FIFO has 2N elements within it
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Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
˝ The two outputs, o_empty and o_full, should properly reflect

the size of the FIFO

– o_empty means the FIFO is currently empty
– o_full means the FIFO has 2N elements within it

˝ Challenge: Use sequences to prove that

– Given any two values written successfully
– Verify that those two values can (some time later) be read

successfully, and in the right order
(Unless a reset takes place in the meantime)



Hint

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

282 / 285

When using sequences,. . .

˝ It can be very difficult to figure out what part of the
sequence failed.
The assertion that fails will reference the entire failing
sequence.

Suggestions:

˝ Sequences must be triggered
Be aware of what triggers a sequence

˝ Use combinational logic to define wires that will then
represent steps in the sequence

˝ Build the sequences out of these wires
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Here’s an example:

wire f_a , f_b , f_c ;
//
ass ign f_a = // your l o g i c
ass ign f_b = // your l o g i c
ass ign f_c = // your l o g i c
//
sequence ARBITRARY_EXAMPLE_SEQUENCE

f_a [ ∗ 0 : 4 ] ##1 f_b ##1 f_c [ ∗ 1 2 : 1 6 ] ;
endsequence

If you use this approach

˝ Interpreting the wave file will be much easier
˝ The f_a, etc., lines will be in the trace
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