
Gisselquist
Technology, LLC

An Introduction to

Formal Methods

Daniel E. Gisselquist, Ph.D.

Lessons

Ź Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

2 / 285

Day one

1. Motivation
2. Basic Operators
3. Clocked Operators
4. Induction
5. Bus Properties

Day two

6. Free Variables
7. Abstraction
8. Invariants
9. Multiple-Clocks
10. Cover
11. Sequences
12. Final Thoughts

Course Structure

Ź Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

3 / 285

˝ VHDL logic examples

Course Structure

Ź Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

3 / 285

˝ VHDL logic examples
˝ System Verilog assertion wrappers

Course Structure

Ź Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

3 / 285

˝ VHDL logic examples
˝ System Verilog assertion wrappers
˝ Each lesson will be followed by an exercise

There are 12 exercises
˝ My goal is to have 50% lecture, 50% exercises
˝ Leading up to building a bus arbiter

and testing an synchronous FIFO

Motivation

Welcome

Ź Motivation

Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

4 / 285

Lesson Overview

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

5 / 285

1. Why are you here?
2. What can I provide?
3. What have I learned from formal methods?

Our Objectives

˝ Get to know a little bit about each other
˝ Motivate further discussion

Your expectations

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

6 / 285

What do you want to learn and get out of this course?

From an ARM dev.

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

7 / 285

˝ “I think the main difference between FPGA and ASIC
development is the level of verification you have to go
through. Shipping a CPU or GPU to Samsung or whoever,
and then telling them once they’ve taped out that you have a
Cat1 bug that requires a respin is going to set them back
$1M per mask.

˝ “. . . But our main verification is still done with constrained
random test benches written in SV.

˝ “Overall, you are looking at 50 man years per project
minimum for an average project size.”

Would not exist

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

8 / 285

“If we would not do formal verification, we would
no longer exist.”

– Shahar Ariel, now the former Head of VLSI design at Mellanox

Pentium FDIV

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

9 / 285

One little mistake . . .

. . . $475M later.

Personal Experience

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

10 / 285

I have proven such things as,

˝ Formal bus properties (Wishbone, Avalon, AXI, etc.)
˝ Bus bridges (WB-AXI, Avalon-WB)
˝ AXI DMA’s, firewalls, crossbars
˝ Prefetches, cache controllers, memory controllers, MMU
˝ SPI slaves and masters
˝ UART, both TX and RX
˝ FIFO’s, signal processing flows, FFT
˝ Display (VGA) Controller
˝ Flash controllers
˝ Formal proof of the ZipCPU

Some Examples

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

11 / 285

I’ve found bugs in things I thought were working.

1. FIFO
2. Pre-fetch and Instruction cache
3. SDRAM
4. A peripheral timer

Just how hard can a timer be to get right? It’s just a
counter!

Ex: FIFO

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

12 / 285

˝ It worked in my test bench
˝ Failed when reading and writing on the same clock while

empty

– Write first then read worked
– R+W on full FIFO is okay
– R+W on an empty FIFO

Ex: FIFO

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

12 / 285

˝ It worked in my test bench
˝ Failed when reading and writing on the same clock while

empty

– Write first then read worked
– R+W on full FIFO is okay
– R+W on an empty FIFO . . . not so much

˝ My test bench didn’t check that, formal did

Ex: Prefetch

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

13 / 285

˝ It worked in my test bench
˝ Ugliest bug I ever came across was in the prefetch cache

It passed test-bench muster, but failed in the hardware with a
strange set of symptoms

˝ When I learned formal, it was easy to prove that this would
never happen again.

˝ Low logic has always been one of my goals.
Always asking, “will it work if I get rid of this condition?”
Formal helps to answer that question for me.

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

14 / 285

˝ It worked in my test bench
˝ It passed my hardware testing

– Test S/W: Week+, no bugs

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

14 / 285

˝ It worked in my test bench
˝ It passed my hardware testing

– Test S/W: Week+, no bugs
– Formal methods found the bug
– Full proof took less than ă 30 min

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

15 / 285

˝ It worked in my test bench
˝ It passed my hardware testing
˝ Background

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

15 / 285

˝ It worked in my test bench
˝ It passed my hardware testing
˝ Background

– SDRAM’s are organized into separate banks, each having
rows and columns

– A row must be “activated” before it can be used.
– The controller must keep track of which row is activated.
– If a request comes in for a row that isn’t activated, the

active row must be deactivated, and the proper row must
be activated.

˝ A subtle bug in my SDRAM controller compared the active
row address against the immediately previous (1-clock ago)
required row address, not the currently requested address.
This bug had lived in my design for years. Formal methods
caught it.

Problem with Test Benches

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

16 / 285

˝ Only examines a known good branch
˝ Cannot check for every out of bounds conditions

Problem with Test Benches

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

17 / 285

˝ Demonstrate design works
˝ Through a normal working path

– or a limited number of extraneous paths

˝ Never rigorous enough to check everything
˝ Not uniform in rigour

For the FIFO,

˝ I only read when I knew it wasn’t empty

For the Prefetch,

˝ I never tested jumping to the last location in a cache line

For the SDRAM,

˝ The error was so obscure, it would be hard to trigger

Before Formal

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

18 / 285

This was my method before starting to work with formal.

˝ After . . .

– Proving my design with test
benches

– Directed simulation

˝ I was still chasing bugs in hard-
ware

I still use this approach for DSP al-
gorithms.

Design Approach

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

19 / 285

˝ After finding the bug in my
FIFO . . . I was hooked.

˝ Rebuilding everything
. . . now using formal

˝ Formal found more bugs
. . . in example after example

˝ I’m hooked!

When to use it?

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

20 / 285

˝ Bus component
I would not build a bus compo-
nent without formal any more

˝ Multiplies
Formal struggles with multipli-
cation

Formal Verification
Basics: assert and assume

Welcome

Motivation

Ź Basics

Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

21 / 285

Lesson Overview

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

22 / 285

Let’s start at the beginning, and look at the very basics of formal
verification.
Our Objective:

˝ To learn the basic two operators used in formal verification,

– assert()

– assume()

˝ To understand how these affect a design from a state space
perspective

˝ We’ll also look at several examples

Basic Premise

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

23 / 285

Formal methods are built around looking for redundancies.

˝ Basic difference between mediocre and excellent:
Double checking your work

˝ Two separate and distinct fashions

– First method calculates the answer
– Second method proved it was right

˝ Example: Division

– 89, 321{499 “ 179

– Does it? Let’s check: 179 ˚ 499 “ 89, 321 — Yes

˝ Formal methods are similar

– Your design is the first method
– Formal properties describe the second

Basic Operators

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

24 / 285

Let’s start with the two basic operators

1. assume()

An assume(X) statement will limit the state space that the
formal verification engine examines.

2. assert()

An assert(X) statement indicates that X must be true, or the
design will fail to prove.

VHDL

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

25 / 285

We’ll be using VHDL logic, System Verilog Assertions

˝ Proprietary Verific library gives Yosys access to VHDL
˝ Formal properties will be written in System Verilog
˝ System Verilog bind operator will connect the two

Two basic forms

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

26 / 285

always @ (∗)
as se r t (X) ;

// Use when your p r o p e r t y has c l o c k dependenc i e s ,
// such as r e f e r e n c i n g an i t ems va l u e i n the pa s t
always @ (posedge clk)

as se r t (X) ;

As an example,

always @ (∗)
as se r t (counter < 20) ;

General Rule

Welcome

Motivation

Basics

Basics

Ź General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

27 / 285

Assert

Welcome

Motivation

Basics

Basics

General Rule

Ź Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

28 / 285

˝ Assertions define the illegal state space.
˝ Additional assertions will increase the size of the illegal state

space.

Assume

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

29 / 285

˝ Assumptions limit the universe of all possibilities
˝ Additional assumptions will decrease the size of the total

state space
˝ Caution: One careless assumption can void the proof

The Careless Assumption

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

30 / 285

s i gna l : unsigned (15 downto 0) := 0 ;
´́ ´
process (clk)
begin

i f (rising_edge (clk)) then
counter <= counter + 1 ;

end i f ;
end process ;

always @ (∗)
begin

as se r t (counter <= 100) ;
assume (counter <= 90) ;

end

Question: Will counter ever reach 120?

restrict vs assume

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

31 / 285

restrict () is very similar to assume()

Operator Formal Verification Traditional Simulation

restrict () Restricts search Ignored
assume() space Halts simulation
assert() Illegal state with an error

restrict vs assume

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

31 / 285

restrict () is very similar to assume()

Operator Formal Verification Traditional Simulation

restrict () Restricts search Ignored
assume() space Halts simulation
assert() Illegal state with an error

˝ restrict (): Like assume(X), it also limits the state space
˝ But in a traditional simulation . . .

– restrict () is ignored
– assume() is turned into an assert()

Bounded Model Checking

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

32 / 285

For bounded model checking,

1. Start at the initial state
2. Examine all possible states for N clocks
3. Try to find a way to make an assert (); fail
4. If it’s not possible in N clocks, then pass

No Solution

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

33 / 285

Problem: initial assume(!initial_state);

Model fails, no line number given.

No Solution

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

34 / 285

Problem: assume(!reachable_state);

Model fails, no line number given.

Further thoughts

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

35 / 285

Unlike the rest of your digital design, formal properties . . .

˝ don’t need to meet timing
˝ don’t need to meet a minimum logic requirement

We’ll discuss this more as we go along.

Example Bus Slave

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

36 / 285

Here’s an example of a bus slave

˝ Inputs are assumed
˝ Outputs are asserted

Example Bus Master

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

37 / 285

Question: How would a bus master be different?

Example Bus Master

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

37 / 285

Question: How would a bus master be different?

The slave’s outputs are the master’s inputs

˝ assume() the inputs from the slave
˝ assert() the outputs from the master

Internal Bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

38 / 285

Question: What if both slave and master signals were part of the
same design?

Internal Bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

38 / 285

Question: What if both slave and master signals were part of the
same design?

˝ All of the wires are now internal
˝ They should therefore be assert()ed

Serial Port Transmitter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

39 / 285

˝ Whenever the serial port is idle, the output line should be
high

i f (state == IDLE)
as se r t (o_uart_tx) ;

˝ Whenever the serial port is not idle, busy should be high

i f (state != IDLE)
as se r t (o_busy) ;

e l s e
as se r t (! o_busy) ;

˝ The design can only ever be in a valid state

as se r t ((state <= TXUL_STOP)
| | (state == TXUL_IDLE)) ;

Bus Arbiter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

40 / 285

˝ Arbiter cannot grant both A and B access

always @ (∗)
as se r t ((! grant_A) | | (! grant_B)) ;

˝ While one has access, the other must be stalled

always @ (∗)
i f (grant_A)

as se r t (stall_B) ;

always @ (∗)
i f (grant_B)

as se r t (stall_A) ;

Bus Arbiter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

41 / 285

˝ While one is stalled, its outstanding requests must be zero

always @ (∗)
i f (grant_A)
begin

as se r t (f_nreqs_B == 0) ;
as se r t (f_nacks_B == 0) ;
as se r t (f_outstanding_B == 0) ;

end

I use the prefix f_ to indicate a variable that is

˝ Not part of the design
˝ But only used for Formal Verification

Avalon bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

42 / 285

˝ Avalon bus: will never issue a read and write request at the
same time

always @ (∗)
assume ((! i_av_read) | | (! i_av_write)) ;

˝ The bus is initially idle

i n i t i a l assume (! i_av_read) ;
i n i t i a l assume (! i_av_write) ;
i n i t i a l assume (! i_av_lock) ;
i n i t i a l a s se r t (! o_av_readdatavalid) ;
i n i t i a l a s se r t (! o_av_writeresponsevalid) ;

Avalon bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

43 / 285

˝ Cannot respond to both read and write in the same clock

always @ (∗)
assume ((! i_av_readdatavalid)

| | (! i_av_writeresponsevalid)) ;

Remember ! (A&&B) is equivalent to (!A)||(! B)

˝ Cannot respond if no request is outstanding

always @ (∗)
begin

i f (f_wr_outstanding == 0)
as se r t (! o_av_writeresponsevalid) ;

i f (f_rd_outstanding == 0)
as se r t (! o_av_readdatavalid) ;

end

Wishbone

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

44 / 285

˝ o_STB can only be high if o_CYC is also high

always @ (∗)
i f (o_STB)

as se r t (o_CYC) ;

˝ Count the number of outstanding requests:

f_outstanding <= ”0” when (i_reset)
e l s e f_nreqs ´ f_nacks ;

˝ Acks can only respond to valid requests

i f (f_outstanding == 0)
assume (! i_wb_ack) ;

Wishbone

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

45 / 285

˝ Well, what if a request is being made now?

i f ((f_outstanding == 0)
&&((!o_wb_stb) | | (i_wb_stall)))

assume (! i_wb_ack) ;

˝ If not within a bus request, the ACK and ERR lines must be
low

i f (! o_CYC)
begin

assume (! i_ACK) ;
assume (! i_ERR) ;

end

˝ Following any reset, the bus will be idle
˝ Requests remain unchanged until accepted

Cache

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

46 / 285

Want a guarantee that the cache response is consistent?

˝ A valid cache entry must ...

always @ (posedge i_clk)
i f (o_valid)
begin

// Be marked v a l i d i n the cache
as se r t (cache_valid [f_addr [CW´1:LW]]) ;
// Have the same cache tag as add r e s s
as se r t (f_addr [AW´1:LW] ==

cache_tag [f_addr [CW´1:LW]]) ;
// Match the v a l u e i n the cache
as se r t (o_data ==

cache_data [f_addr [CW´1 : 0]) ;
// Must be i n r e s pon s e to a v a l i d
// r e q u e s t
as se r t (waiting_requests != 0) ;

end

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

47 / 285

Consider a multiply

˝ Just because an algorithm doesn’t meet timing

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

47 / 285

Consider a multiply

˝ Just because an algorithm doesn’t meet timing, or
˝ Just because it take up logic your FPGA doesn’t have

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

47 / 285

Consider a multiply

˝ Just because an algorithm doesn’t meet timing, or
˝ Just because it take up logic your FPGA doesn’t have,

doesn’t mean you can’t use it now

always @ (posedge i_clk)
begin

f_answer = 0 ;
f o r (k=0; k<NA ; k=k+1)
begin

i f (i_a [k])
f_answer = f_answer + (i_b<<k) ;

end

as se r t (o_result == f_answer) ;
end

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

48 / 285

Let’s talk about that multiply some more . . .

˝ The one thing formal solver’s don’t handle well is multiplies

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

48 / 285

Let’s talk about that multiply some more . . .

˝ The one thing formal solver’s don’t handle well is multiplies

Abstraction offers alternatives

Memory Management Unit

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

49 / 285

˝ For a page result to be valid, it must match the TLB

always @ (∗)
i f (last_page_valid)
begin

as se r t (tlb_valid [f_last_page]) ;
as se r t (last_ppage ==

tlb_pdata [f_last_page]) ;
as se r t (last_vpage ==

tlb_vdata [f_last_page]) ;
as se r t (last_ro ==

tlb_flags [f_last_page] [ROFLAG]) ;
as se r t (last_exe ==

tlb_flags [f_last_page] [EXEFLG]) ;
as se r t (r_context_word [LGCTXT´1:1]

== tlb_cdata [f_last_page]) ;
end

SDRAM

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

50 / 285

˝ Writing requires the right row of the right bank to be
activated

always @ (posedge i_clk)
i f ((f_past_valid)&&(!maintenance_mode))
case (f_cmd)

// . . .
F_WRITE : begin

// Response to a w r i t e r e q u e s t
as se r t (f_we) ;
// Bank i n qu e s t i o n must be a c t i v e
as se r t (bank_active [o_ram_bs] == 3 ’ b111) ;
// Ac t i v e row must be f o r t h i s a dd r e s s
as se r t (bank_row [o_ram_bs]

== f_addr [2 2 : 1 0]) ;
// Must be s e l e c t i n g the r i g h t bank
as se r t (o_ram_bs == f_addr [9 : 8]) ;
end

// . . .

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

51 / 285

Let’s work through a counter as an example.

exercise-01/ Contains three files
counter.vhd This will be the HDL source for

our demo
counter vhd.sv This contains the formal prop-

erties
counter vhd.sby This is the SymbiYosys script

for the demo

Our Objectives:

˝ Walk through the steps in the tool-flow
˝ Hands on experience with SymbiYosys
˝ Ensure everyone has a working version of SymbiYosys
˝ Find and fix a design bug

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

52 / 285

ent i t y counter i s
gener ic (MAX_AMOUNT : natural := 22) ;

´́ ´́
s i gna l counts : unsigned (15 downto 0) ;

´́ ´́
process (i_clk)
begin

i f (rising_edge (i_clk)) then
i f ((i_start_signal = ’1 ’)

and (0 = counts)) then
counts <= to_unsigned (MAX_AMOUNT´1, 1 6) ;

e l s e
counts <= counts ´ 1 ;

end i f ;
end i f ;

end process ;

o_busy <= ’1 ’ when (0 = counts) e l s e ’ 0 ’ ;

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

53 / 285

module counter_vhd (i_clk , i_start_signal ,
counts , o_busy) ;

parameter [1 5 : 0] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [1 5 : 0] counts ;
input wire o_busy ;

always @ (∗)
as se r t (counts < MAX_AMOUNT) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT (MAX_AMOUNT)) copy (. ∗) ;

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

53 / 285

// VHDL Ports and internal signals
module counter_vhd (i_clk , i_start_signal ,

counts , o_busy) ;

parameter [1 5 : 0] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [1 5 : 0] counts ;
input wire o_busy ;

always @ (∗)
as se r t (counts < MAX_AMOUNT) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT (MAX_AMOUNT)) copy (. ∗) ;

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

53 / 285

module counter_vhd (i_clk , i_start_signal ,
counts , o_busy) ;

// Generic declaration
parameter [1 5 : 0] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [1 5 : 0] counts ;
input wire o_busy ;

always @ (∗)
as se r t (counts < MAX_AMOUNT) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT (MAX_AMOUNT)) copy (. ∗) ;

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

53 / 285

module counter_vhd (i_clk , i_start_signal ,
counts , o_busy) ;

parameter [1 5 : 0] MAX_AMOUNT = 22 ;
// All wrapper ports are inputs
input wire i_clk , i_start_signal ;
input wire [1 5 : 0] counts ;
input wire o_busy ;

always @ (∗)
as se r t (counts < MAX_AMOUNT) ;

endmodule

bind counter counter_vhd

#(.MAX_AMOUNT (MAX_AMOUNT)) copy (. ∗) ;

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

53 / 285

module counter_vhd (i_clk , i_start_signal ,
counts , o_busy) ;

parameter [1 5 : 0] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [1 5 : 0] counts ;
input wire o_busy ;

// Formal properties start here
always @ (∗)

as se r t (counts < MAX_AMOUNT) ;
endmodule

bind counter counter_vhd

#(.MAX_AMOUNT (MAX_AMOUNT)) copy (. ∗) ;

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

53 / 285

module counter_vhd (i_clk , i_start_signal ,
counts , o_busy) ;

parameter [1 5 : 0] MAX_AMOUNT = 22 ;

input wire i_clk , i_start_signal ;
input wire [1 5 : 0] counts ;
input wire o_busy ;

always @ (∗)
as se r t (counts < MAX_AMOUNT) ;

endmodule
// Connect the two modules together
bind counter counter_vhd

#(.MAX_AMOUNT (MAX_AMOUNT)) copy (. ∗) ;

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc
[s c r i p t]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc Bounded model checking mode
[engines]
smtbmc
[s c r i p t]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc Run, using yosys-smtbmc
[s c r i p t]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc
[s c r i p t] Yosys commands
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc
[s c r i p t]
read ´vhdl counter . vhd Read VHDL file
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc
[s c r i p t]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv Read SV file w/SVA
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc
[s c r i p t]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter Prepare the file for formal
[f i l e s]
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

54 / 285

In the file, exercise-01/counter vhd.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc
[s c r i p t]
read ´vhdl counter . vhd
read ´formal counter_vhd . sv
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s] List of files to be used
counter . vhd
counter_vhd . sv

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc Other modes: prove, cover, live
depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc

depth 20 # of Steps to examine
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices Yices theorem prover (default)
smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r Other potential solvers
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all We’ll discusss this later
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

55 / 285

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v Full or relative pathnames go here

Running SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

56 / 285

Run: % sby -f counter vhd.sby

Running SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

56 / 285

Run: % sby -f counter vhd.sby

BMC Failed

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

57 / 285

Run: % sby -f counter vhd.sby

Where Next

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

58 / 285

Look at source line 55, and fire up gtkwave

GTKWave trace.vcd

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

59 / 285

Run: % gtkwave counter vhd/engine 0/trace.vcd

Examine the source

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

60 / 285

Run: % gvim demo-rtl/counter vhd.v

What did we do wrong?

Examine the source

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

61 / 285

Run: % demo-rtl/counter vhd.v

Notice anything wrong?

Examine the source

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

61 / 285

Run: % demo-rtl/counter vhd.v

Notice anything wrong?

How about the missing initial value?

Illegal Initial State

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Ź Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

62 / 285

˝ Problem: No initial statement
˝ Solver finds an invalid initial state
˝ Model fails

Exercise

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Ź Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

63 / 285

Try adding in the initial value, will it work?

Clocked and $past

Welcome

Motivation

Basics

Ź
Clocked and
$past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

64 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

Ź Past

$past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

65 / 285

Our Objective:

˝ To learn how to make assertions crossing time intervals

– $past()

˝ Before the beginning of time

– Assumptions always hold
– Assertions rarely hold

˝ How to get around this with f_past_valid

The $past operator

Welcome

Motivation

Basics

Clocked and $past

Ź Past

$past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

66 / 285

˝ $past(X) Returns the value of X one clock ago.
˝ $past(X,N) Returns the value of X N clocks ago.
˝ Depends upon a clock

– This is illegal

always @ (∗)
i f (X)

as se r t (Y == $past (Y)) ;

No clock is associated with the $past operator.
– But you can do this

always @ (posedge clk)
i f (X)

as se r t (Y == $past (Y)) ;

$past Rule

Welcome

Motivation

Basics

Clocked and $past

Past

Ź $past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

67 / 285

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

68 / 285

Let’s modify our counter, by creating some additional properties:

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge clk)
as se r t ($past (counter == 0)) ;

˝ i_start_signal is now never true, so the counter should
always be zero.

˝ assert(counter == 0);

This should always be true, since counter starts at zero, and
is never changed from zero.

˝ Will assert($past(counter == 0)); succeed?

You can find this file in exercise-02/pastassert.vhd

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

69 / 285

˝ This fails

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge clk)
as se r t ($past (counter == 0)) ;

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

69 / 285

˝ This fails

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge clk)
as se r t ($past (counter == 0)) ;

˝ Before time, counter is unconstrained.
˝ The solver can make it take on any value it wants in order to

make things fail
˝ This will not show in the VCD file

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

70 / 285

˝ This succeeds

always @ (∗)
assume (! i_start_signal) ;

always @ (∗)
as se r t (counter == 0) ;

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

71 / 285

Let’s try again:

always @ (posedge clk)
i f ($past (i_start_signal))

as se r t (counter == MAX_AMOUNT´1’b1) ;

This should work, right?

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

71 / 285

Let’s try again:

always @ (posedge clk)
i f ($past (i_start_signal))

as se r t (counter == MAX_AMOUNT´1’b1) ;

This should work, right? No, it fails.

˝ i_start_signal is unconstrained before time
˝ counter is initially constrained to zero
˝ If i_start_signal is one before time,

counter will still be zero when time begins

f past valid

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

72 / 285

We can fix this with a register I call, f_past_valid:

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal)))

as se r t (counter == MAX_AMOUNT´1’b1) ;

Will this work?

f past valid

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

72 / 285

We can fix this with a register I call, f_past_valid:

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal)))

as se r t (counter == MAX_AMOUNT´1’b1) ;

Will this work? Almost, but not yet.

Fixing the counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

73 / 285

˝ What about the case where i_start_signal is raised while
the counter isn’t zero?

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal))

&&($past (counter == 0)))
as se r t (counter == MAX_AMOUNT´1’b1) ;

˝ Will this work?

Fixing the counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

73 / 285

˝ What about the case where i_start_signal is raised while
the counter isn’t zero?

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal))

&&($past (counter == 0)))
as se r t (counter == MAX_AMOUNT´1’b1) ;

˝ Will this work? Yes, now it will work
˝ You’ll find lots of references to f_past_valid in my own

designs

Examples

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

74 / 285

Let’s look at some practical examples

Reset example, #1

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

75 / 285

The rule: Every design should start in the reset state.

i n i t i a l assume (i_RESET) ;

always @ (∗)
i f (! f_past_valid)

assume (i_RESET) ;

What would be the difference between these two properties?

Reset example, #2

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

76 / 285

The rule: On the clock following a reset, there should be no
outstanding bus requests.

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_RESET)))

as se r t (! o_CYC) ;

Reset example, #2

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

77 / 285

Two times registers must have their reset value

˝ Initially
˝ Following a reset

always @ (posedge clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

as se r t (! o_CYC) ;
as se r t (! o_STB) ;
// e t c .

end

Bus example

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

78 / 285

The rule: while a request is being made, the request cannot
change until it is accepted.

always @ (posedge clk)
i f ((f_past_valid)

&&($past (o_STB))&&($past (i_STALL)))
begin

as se r t (o_STB) ;
as se r t (o_REQ == $past (o_REQ)) ;

end

Ex: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

79 / 285

Many of my projects include some type of “busy counter”

˝ Serial port logic must wait for a baud clock
Transmit characters must wait for the port to be idle

˝ I2C logic needs to slow the clock down
˝ SPI logic may also need to slow the clock down

Objectives:

˝ Gain some confidence using formal methods to prove that
alternative designs are equivalent

Exercise: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

80 / 285

Here’s the basic design. It should look familiar.

process (i_clk)
begin

i f (rising_edge (i_clk)) then
i f (i_reset) then

counter <= to_unsigned (0 , 1 6) ;
e l s i f ((i_start_signal = ’1 ’)

and (0 = counter)) then
counter <= to_unsigned (MAX_AMOUNT ´1 ,16) ;

e l s i f (0 /= counter) then
counter <= counter ´ 1 ;

end i f ;
end i f ;

end process ;

o_busy <= ’0 ’ when (0 = counter) e l s e ’ 1 ’ ;

Exercise: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

81 / 285

You can find the design in exercise-03/busyctr.vhd.
Exercise: Create the following properties:

1. i_start_signal may be raised at any time
No property needed here

2. Once raised, assume i_start_signal will remain high until
it is high and the counter is no longer busy.

3. o_busy will always be true while the counter is non-zero
Make sure you check o_busy both when counter == 0 and
counter != 0

This requires an assertion
4. If the counter is non-zero, it should always be counting down

Beware of the reset!
This requires another assertion

Exercise: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

82 / 285

Let’s draw this requirement out

2. Once raised, assume i_start_signal will remain high until
it is high and the counter is no longer busy.

i clk

i start signal

o busy

counter 5 4 3 2 1 0 21

Busy Counter, Part two

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

83 / 285

Exercise:

1. Make o_busy a clocked register

process (i_clk)
begin

i f (rising_edge (i_clk)) then
o_busy <= ´́ Your l o g i c goes he r e

end i f ;
end process ;

2. Prove that o_busy is true if and only if the counter is
non-zero

˝ You can use this approach to adjust your design to meet
timing

– Shuffle logic from one clock to another, then
– Prove the new design remains valid

k Induction

Welcome

Motivation

Basics

Clocked and $past

Ź k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

84 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

85 / 285

If you want to formally verify your design, BMC is insufficient

˝ Bounded Model Checking (BMC) will only prove that your
design is correct for the first N clocks.

˝ It cannot prove that the design won’t fail on the next clock,
clock N ` 1

˝ This is the purpose of the induction step: proving correctness
for all time

Our Goals

˝ Be able to explain what induction is
˝ Be able to explain why induction is valuable
˝ Know how to run induction
˝ What are the unique problems associated with induction

From Pre-Calc

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

86 / 285

Proof by induction has two steps:

1. Base case: Prove for N “ 0 (or one)
2. Inductive step: Assume true for N , prove true for N ` 1.

Example: Prove
N´1
ÿ

n“0

xn “
1´ xN

1´ x

˝ For N “ 1, the sum is x0 or one

N´1
ÿ

n“0

xn “ x0 “
1´ x

1´ x

So this is true (for x ‰ 1).
˝ For the inductive step, we’ll

– Assume true for N , then prove for N ` 1

Proof, continued

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

87 / 285

Prove
N´1
ÿ

n“0

xn “
1´ xN

1´ x
for all N

˝ Assume true for N , prove for N ` 1
N
ÿ

n“0

xn “ xN `
N´1
ÿ

n“0

xn “ xN `
1´ xN

1´ x

˝ Prove for N ` 1

N
ÿ

n“0

xn “
1´ x

1´ x
xN `

1´ xN

1´ x

“
xN ´ xN`1 ` 1´ xN

1´ x
“

1´ xN`1

1´ x

This proves the inductive case.
˝ Hence this is true for all N (where N ą 0 and x ‰ 1)

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

88 / 285

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

88 / 285

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

This is what we did with BMC

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

88 / 285

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

This is our next step

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

88 / 285

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

Why use k induction?

Induction in Verification

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

89 / 285

Formal verification uses k induction

˝ Base case:
Assume the first N steps do not violate any assumptions, . . .
Prove that the first N steps do not violate any assertions.
The is the BMC pass we’ve already done.

˝ Inductive Step:
Assume N steps exist that neither violate any assumptions
nor any assertions, and
Assume the N ` 1 step violates no assumptions, . . .
Prove that the N ` 1 step does not violate any assertions.

BMC vs Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

Ź vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

90 / 285

BMC and induction are very different.

˝ BMC, the base case

˝ Induction step

˝ The number of BMC time-steps steps must be more than the
number of inductive time-steps

˝ Register values at the beginning of the inductive step can be
anything allowed by your assertions and assumptions

˝ This is where the work takes place.

General Rule

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

91 / 285

The general rule hasn’t changed:

˝ assume inputs,
˝ assert internal states and any outputs.

If you assume too much, your design will pass formal verification
and still not work.

Checkers

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

92 / 285

Some assertions:

˝ Games are played on black squares
˝ Players will never have more than 12 pieces
˝ Only legal moves are possible
˝ Game is over when one side can no longer move

Where might the induction engine start?

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

93 / 285

Black’s going to move and win

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

93 / 285

White’s going to move and win

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

93 / 285

Black’s going to . . . , huh?

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

93 / 285

Would this pass our criteria?

Checkers and Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

94 / 285

What can we learn from Checkers?

˝ Inductive step starts in the middle of the game
Only the assumptions and asserts are used to validate the
game

˝ All of the FF’s (variables) start in arbitrary states
These states are only constrained by your assumptions and
assertions.

˝ Your formal constraints are required to limit the allowable
states

The Trap

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

Ź The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

95 / 285

˝ If your formal properties are not strict enough,
Induction may start in an unreachable state

˝ This is a common problem!

The Solution

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

Ź The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

96 / 285

To make induction work, you must . . .

˝ assume unrealistic inputs will never happen
˝ assert any remaining unreachable states are illegal
˝ Induction often requires more properties than BMC alone

Results

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Ź Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

97 / 285

Unlike BMC, the results of induction might be inconclusive

k
In
d
u
ct
io
n Basecase (BMC)

FAIL PASS

FAIL Design UNKNOWN
PASS Fails SUCCESS!

The k induction pass will fail if your design doesn’t have enough
assertions.

Results

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Ź Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

98 / 285

There’s also a difference in when BMC and induction finish

˝ BMC will finish early if the design FAILs
˝ Induction will finish early if the design PASSes
˝ In all other cases, they will take a full depth steps

You can use this fact to trim the depth of your proof

˝ Once induction succeeds, trim your proof depth to that
length

˝ This will immediately make your proof run that much faster

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

99 / 285

˝ Let’s look at some examples

Another Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

100 / 285

This design would pass many steps of BMC

s i gna l counter : unsigned (15 downto 0) := 0 ;
´́ ´́
process (clk)
begin

i f (rising_edge (clk)) then
counter <= counter + 1 ;

end i f ;
end process ;

always @ (∗)
as se r t (counter < 16 ’ d65000) ;

It will not pass induction.
Can you explain why not?

Another Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

101 / 285

Here’s another counter that will pass BMC, but not induction

s i gna l : counter : unsigned (15 downto 0) := 0 ;
´́ ´́

i f (rising_edge (clk)) then
i f (counter = to_unsigned (22 , 16)) then

counter <= 0 ;
e l s e

counter <= counter + 1 ;
end i f ;

end i f ;

always @ (∗)
as se r t (counter != 16 ’ d500) ;

Can you explain why not?

Another Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

102 / 285

With one simple change, this design will now pass induction

s i gna l : counter : unsigned (15 downto 0) := 0 ;
´́ ´́

i f (rising_edge (clk)) then
i f (counter = to_unsigned (22 , 16)) then

counter <= 0 ;
e l s e

counter <= counter + 1 ;
end i f ;

end i f ;

always @ (∗)
as se r t (counter <= 16 ’ d22) ;

See the difference?

Shift Register Comparison

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

103 / 285

These shift registers will be equal during BMC, but require at
least sixteen steps to pass induction

s i gna l sa : unsigned (15 downto 0) := 0 ;
s i gna l sb : unsigned (15 downto 0) := 0 ;
´́ ´́

i f (rising_edge (clk)) then
begin

sa <= sa (14 downto 0) & i_bit ;
sb <= sb (14 downto 0) & i_bit ;

end i f ;

always @ (∗)
as se r t (sa [1 5] == sb [1 5]) ;

Can you explain why it would take so long?

Shift Register Comparison

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

104 / 285

This design is almost identical to the last one, yet fails induction.
The key difference is the if (i_ce = ’1’).

s i gna l sa : unsigned (15 downto 0) := 0 ;
s i gna l sb : unsigned (15 downto 0) := 0 ;
´́ ´́

i f (rising_edge (clk)) then
begin

i f (i_ce = ’1 ’) then
sa <= sa (14 downto 0) & i_bit ;
sb <= sb (14 downto 0) & i_bit ;

end i f ;
end i f ;

always @ (∗)
as se r t (sa [1 5] == sb [1 5]) ;

Can you explain why this wouldn’t pass?

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc

˝ abc pdr

˝ aiger suprove

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc Inconclusive Proof (Induction fails)
˝ abc pdr Pass
˝ aiger suprove Pass

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

105 / 285

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc Inconclusive Proof (Induction fails)
˝ abc pdr Pass
˝ aiger suprove Pass

Most of these options work for some designs only

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

106 / 285

Here’s how we’ll change our sby file:

[opt ions]
mode prove

[engines]
smtbmc
[s c r i p t]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all
[f i l e s]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

106 / 285

Here’s how we’ll change our sby file:

[opt ions]
mode prove Use BMC and k-induction
[engines]
smtbmc
[s c r i p t]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all
[f i l e s]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

106 / 285

Here’s how we’ll change our sby file:

[opt ions]
mode prove

[engines]
smtbmc Other potential engines would go here
[s c r i p t]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all
[f i l e s]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

106 / 285

Here’s how we’ll change our sby file:

[opt ions]
mode prove

[engines]
smtbmc
[s c r i p t]
read ´vhdl lfsr_fib . vhd
read ´vhdl dblpipe . vhd
read ´formal dblpipe_vhd . sv
prep ´top dblpipe

opt_merge ´share_all Here’s where opt merge would go
[f i l e s]
lfsr_fib . vhd
dblpipe . vhd
dblpipe_vhd . sv

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

107 / 285

Exercise #4: dblpipe.vhd

one : lfsr_fib port map (
i_clk => i_clk , i_reset => ’ 0 ’ ,
i_ce => i_ce , i_in => i_data ,
o_bit => a_data) ;

two : lfsr_fib port map (
i_clk => i_clk , i_reset => ’ 0 ’ ,
i_ce => i_ce , i_in => i_data ,
o_bit => b_data) ;

process (a_data , b_data)
begin

o_data <= a_data xor b_data ;
end process ;

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

108 / 285

Exercise #4: dblpipe.vhd

˝ lfsr_fib just implements a Fibonacci linear feedback shift
register,

sreg (LN´2 downto 0) <= sreg (LN´1 downto 1) ;
sreg (LN´1) <= (xor (sreg and TAPS)) xor i_in ;

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

109 / 285

Exercise #4: dblpipe.vhd, lfsr fib.vhd

process (i_clk)
begin

i f (rising_edge (i_clk)) then
i f (i_reset = ’1 ’) then

sreg <= INITIAL_FILL ;
e l s i f (i_ce = ’1 ’) then

sreg (LN´2 downto 0) <= sreg (LN´1 downto 1) ;
sreg (LN´1) <= (xor (sreg and TAPS))

xor i_in ;
end i f ;

end i f ;
end process ;

o_bit <= sreg (0) ;

˝ Both registers one and two use the exact same logic

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

110 / 285

Exercise #4:

˝ Using dblpipe.vhd

– Prove that the output, o_data, is zero

Ex: LFSRs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

111 / 285

Galois and Fibonacci are supposedly identical

˝ Galois

˝ Fibonacci

˝ Exercise #5 will be to prove these two implementations are
identical

Ex: LFSRs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

112 / 285

Exercise #5:

˝ exercise-05/ contains files lfsr equiv.vhd,
lfsr gal.vhd, and lfsr fib.vhd.

˝ lfsr gal.vhd contains a Galois version of an LFSR
˝ lfsr fib.vhd contains a Fibonacci version of the same

LFSR
˝ lfsr equiv.vhd contains an assertion that these are

equivalent

Prove that these are truly equivalent shift registers.

Where is the bug?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

113 / 285

Following an induction failure, look over the trace

If you see a problem in section . . .

A You have a missing one or more assertions
You’ll only have this problem with induction.

B You have a failing assert @(posedge clk)

C You have a failing assert @(∗)

These latter two indicate a potential logic failure, but they
could still be caused by property failures.

Bus Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

114 / 285

Ex: WB Bus

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ź Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

115 / 285

We have everything we need now to write formal properties for a
bus

˝ This lesson walks through an example the Wishbone Bus

Our Objectives:

˝ Learn to apply formal methods to something imminently
practical

˝ Learn to build the formal description of a bus component
˝ Help lead up to a bus arbiter component

AXI Channels

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

Ź AXI

Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

116 / 285

Avalon Channels

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Ź Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

117 / 285

Wishbone Channels

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Ź Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

118 / 285

˝ Why use the Wishbone? It’s simpler!

WB Signals

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

119 / 285

From the master’s perspective:
Specification name My name

CYC O o wb cyc
STB O o wb stb
WE O o wb we

ADDR O o wb addr
DATA O o wb data
SEL O o wb sel

STALL I i wb stall
ACK I i wb ack
DATA I i wb data

ERR I i wb err

WB Signals

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

120 / 285

From the slave’s perspective:
Specification name My name

CYC I i wb cyc
STB I i wb stb
WE I i wb we

ADDR I i wb addr
DATA I i wb data
SEL I i wb sel

STALL O o wb stall
ACK O o wb ack
DATA O o wb data

ERR O o wb err
To swap perspectives from master to slave . . .

˝ Swap the port direction
˝ Swap the assume() statements for assert()s

Single Read

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

121 / 285

CLK

o CYC

o STB

o WE

o ADDR A0

o DATA

i STALL

i ACK

i DATA D0

˝ STB must be low when CYC is low
˝ If CYC goes low mid-transaction, the transaction is aborted
˝ While STB and STALL are active, the request cannot change
˝ One request is made for every clock with STB and !STALL

Single Read

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

122 / 285

CLK

o CYC

o STB

o WE

o ADDR A0

o DATA

i STALL

i ACK

i DATA D0

˝ One ACK response per request
˝ No ACKs allowed when the bus is idle
˝ No way to stall the ACK line
˝ The bus result is in i DATA when i ACK is true

Three Writes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

123 / 285

CLK

o CYC

o STB

o WE

o ADDR A1 A2 A3

o DATA D1 D2 D3

i STALL

i ACK

i DATA

Let’s start building some formal properties

CYC and STB

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

124 / 285

˝ The bus starts out idle, and returns to idle after a reset

always @ (posedge i_clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

assume (! i_wb_ack) ;
assume (! i_wb_err) ;
//
as se r t (! o_wb_cyc) ;
as se r t (! o_wb_stb) ;

end

CYC and STB

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

124 / 285

˝ The bus starts out idle, and returns to idle after a reset

always @ (posedge i_clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

assume (! i_wb_ack) ;
assume (! i_wb_err) ;
//
as se r t (! o_wb_cyc) ;
as se r t (! o_wb_stb) ;

end

˝ STB is low whenever CYC is low

always @ (∗)
i f (! o_wb_cyc)

as se r t (! o_wb_stb) ;

The Master Waits

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

125 / 285

˝ While STB and STALL are active, the request doesn’t change

ass ign f_request = { o_stb , o_we , o_addr ,
o_data } ;

always @ (posedge clk)
i f ($past (o_wb_stb)&&($past (i_wb_stall)))

as se r t (f_request == $past (f_request)) ;

˝ Did we get it?

The Master Waits

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

125 / 285

˝ While STB and STALL are active, the request doesn’t change

ass ign f_request = { o_stb , o_we , o_addr ,
o_data } ;

always @ (posedge clk)
i f ($past (o_wb_stb)&&($past (i_wb_stall)))

as se r t (f_request == $past (f_request)) ;

˝ Did we get it? Well, not quite
o_data is a don’t care for any read request

The Master Waits

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

126 / 285

˝ While STB and STALL are active, the request doesn’t change

ass ign f_rd_request = { o_stb , o_we , o_addr } ;
ass ign f_wr_request = { f_rd_request , o_data } ;

always @ (posedge clk)
i f ((f_past_valid)
&&($past (o_wb_stb))&&($past (i_wb_stall)))

begin
// F i r s t , f o r reads ´́ o da ta i s a don ’ t c a r e
i f ($past (! i_wb_we))

as se r t (f_rd_request == $past (f_rd_request)) ;
// Second , f o r w r i t e s ´́ o da ta must not change
i f ($past (i_wb_we))

as se r t (f_wr_request == $past (f_wr_request)) ;
end

CYC and STB

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

127 / 285

˝ No acknowledgements without a request
˝ No errors without a request
˝ Following any error, the bus cycle ends
˝ A bus cycle can be terminated early

Bus example

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

128 / 285

The rule: the slave (external) cannot stall the master more than
F_OPT_MAXSTALL counts:

i f (rising_edge (i_clk)) then
i f ((i_reset = ’1 ’) or (o_CYC = ’0 ’)

or ((o_STB= ’1 ’)
and (i_stall = ’0 ’))) then

f_stall_count <= 0 ;
e l s e

f_stall_count <= f_stall_count + 1 ;
end i f ;

end i f ;

always @ (posedge clk)
i f (o_CYC)

assume (f_stall_count < F_OPT_MAXSTALL) ;

This solves the i_ce problem, this time with the i_STALL signal

Bus example

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

129 / 285

The rule: the slave can only respond to requests

process (i_clk)
begin

i f (rising_edge (i_clk)) then
f_nreqs <= to_unsigned (0 , F_LGDEPTH) ;

e l s i f ((i_STB = ’1 ’) and (o_STALL = ’0 ’)) then
f_nreqs <= f_nreqs + 1 ;

end i f ;
end process ;

´́ Need a s i m i l a r coun t e r f o r acknowledgements

always @ (∗)
i f (f_nreqs == f_nacks)

as se r t (! o_ACK) ;

The logic above almost works. Can any one spot the problems?

Two Exercises

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

130 / 285

Let’s build up to proving a WB arbiter

˝ Let’s prove (BMC + k-Induction) . . .

1. Exercise #6: A simple arbiter
exercise-06/reqarb.vhd

2. Exercise #7: Then a Wishbone bus arbiter
exercise-07/wbpriarbiter.vhd

˝ Given a set of bus properties: fwb slave.v

Simple Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

131 / 285

The basics

˝ *_req requests a transaction
˝ *_data, the contents of the transaction
˝ *_busy, true if the source must wait

Simple Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

132 / 285

˝ If (∗_req)&&(!∗_busy),
the request is accepted

˝ If (∗_req)&&(∗_busy),
the request may not change, except on reset

Simple Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

133 / 285

To prove:

˝ No data will be lost, no requests will be dropped
Assume all requests remain stable until accepted

˝ Only one source ever gets access at a time
Assert one busy line is always high

˝ Therefore, all requests go through . . . eventually
This is a natural consequence of the above. Don’t worry
about starvation here.

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

134 / 285

Shall we try this with Wishbone?

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

135 / 285

This request side is almost identical

˝ If (STB)&&(!STALL)

the request is accepted
˝ If (STB)&&(STALL)

the request must not change

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

136 / 285

The difference is the acknowledgements

˝ The arbiter cannot change during an active transaction
˝ All requests get responses
˝ No response can be returned without a request

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

137 / 285

Now, prove that exercise-07/wbpriarbiter.vhd works.

˝ Use both BMC and k-induction (mode prove)
˝ You’ll need to build fwb master.v properties

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

138 / 285

The fwb slave.v properties will

˝ Assume a behaving master
˝ Assert a behaving slave

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

139 / 285

You’ll write the fwb master.v properties

˝ Swapping inputs with outputs

– Port names need not change

˝ Swapping assumptions with assertions

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

140 / 285

The magic is in how the files are connected

˝ If one interface is connected, both master and slave. . .

– Should see the same number of requests
– Should see the same number of acknowledgements

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

141 / 285

The magic is in how the files are connected

˝ If one interface is connected, the other . . .

– Should not have made any successful requests
– Should not have received any acknowledgements

Multiple Files

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

142 / 285

˝ Design with multiple files
˝ They were each formally correct
˝ Problems?

Multiple Files

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

142 / 285

˝ Design with multiple files
˝ They were each formally correct
˝ Problems? Yes! In induction
˝ State variables needed to be formally synchronized (assert())

Multiple Files

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

143 / 285

Proving properties for many components together can quickly
get out of hand!

Free Variables

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ź Free Variables

Lesson Overview

Formal

Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

144 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Ź Lesson Overview

Formal

Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

145 / 285

When dealing with memory, ...

˝ Testing the entire memory is not required
˝ Testing an arbitrary value is

It’s time to discuss (∗ anyconst ∗) and (∗ anyseq ∗)

Objectives

˝ Understand what a free variable is
˝ Understand how (∗ anyconst ∗) and (∗ anyseq ∗) can be

used to create free variables
˝ Learn how you can use free variables to validate memory and

memory interfaces

any*

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Ź Formal

Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

146 / 285

˝ (∗ anyconst ∗)

(∗ anyconst ∗) wire [N´1:0] cval ;

– Can be anything
– Defined at the beginning of time
– Never changed

˝ (∗ anyseq ∗)

(∗ anyseq ∗) wire [N´1:0] sval ;

– Can change from one timestep to the next

Both can still be constrained via assume() statements

VHDL any* attributes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Ź Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

147 / 285

These properties can be used from within VHDL as well:

˝ These are VHDL attributes in Yosys
˝ anyconst

s i gna l cval : std_logic_vector (N´1 downto 0) ;

a t t r i bu te anyconst : bit ;
a t t r i bu te anyconst of cval : s i gna l i s ’ 1 ’ ;

˝ anyseq

s i gna l sval : std_logic_vector (N´1 downto 0) ;

a t t r i bu te anyseq : bit ;
a t t r i bu te anyseq of sval : s i gna l i s ’ 1 ’ ;

Memory

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Ź Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

148 / 285

How might you verify a memory with this?

(∗ anyconst ∗) wire [AW´1:0] f_const_addr ;
reg [DW´1:0] f_mem_value ;

// Handle w r i t e s
always @ (posedge i_clk)
i f ((i_stb)&&(i_we)&&(i_addr == f_const_addr))

f_mem_value <= i_data ;

// Handle r e ad s
always @ (posedge i_clk)
i f ((f_past_valid)&&($past (i_stb))&&(! $past (i_we))

&&($past (i_addr == f_const_addr)))
as se r t (o_data == f_mem_value) ;

So what?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Memory

Ź So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

149 / 285

Consider the specification of a prefetch

˝ The contract

always @ (posedge i_clk)
i f ((o_valid)&&(o_pc == f_const_addr))

as se r t (o_insn == f_const_data) ;

˝ You’ll also need to assume a bus input

always @ (posedge i_clk)
i f ((i_ack)&&(ackd_address == f_const_addr))

assume (i_data == f_const_data) ;

Rule of Free Variables

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Memory

So what?

Ź Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

150 / 285

How would our general rule apply here?

˝ Assume inputs, assert internal state and outputs
˝ Both (∗ anyconst ∗) and (∗ anyseq ∗) act like inputs
˝ You could have written

port (. . . i_value : i n . . . ; . . .) ;

always @ (posedge i_clk)
assume (i_value == $past (i_value)) ;

for the same effect as (∗ anyconst ∗)

˝ assume() them therefore, and not assert()

Ex: Flash Controller

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Memory

So what?

Ź Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

151 / 285

This works for a flash (or other ROM) controller too:

a t t r i bu te anyconst of f_addr : s i gna l i s ’ 1 ’ ;
a t t r i bu te anyconst of f_valid : s i gna l i s ’ 1 ’ ;

always @ (∗)
i f ((o_wb_ack)&&(f_request_addr == f_addr))

as se r t (o_wb_data == f_value) ;

Don’t forget the corollary assumptions!

always @ (∗)
i f (f_request_addr == f_addr)

assume (i_spi_miso
== f_data [controller_state]) ;

. . . or something similar

Ex: Serial Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Memory

So what?

Ź Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

152 / 285

You can use this to build a serial port transmitter

a t t r i bu te anyseq of f_tx_start : s i gna l i s ’ 1 ’ ;
a t t r i bu te anyseq of f_tx_data : s i gna l i s ’ 1 ’ ;

always @ (∗)
i f (f_tx_busy)

assume (! f_tx_start) ;

always @ (posedge f_txclk)
i f (f_tx_busy)

assume (f_tx_data == $past (f_tx_data)) ;

You can then

˝ Tie assertions to partially received data
˝ . . . and pass induction

Discussion

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Memory

So what?

Rule

Ź Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

153 / 285

How would you use free variables to verify a cache
implementation?

Discussion

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Formal

Memory

So what?

Rule

Ź Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

153 / 285

How would you use free variables to verify a cache
implementation?

Hint: you only need three properties for the cache contract

Abstraction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Ź Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

154 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Ź Lesson Overview

Formal

Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

155 / 285

˝ Proving simple modules is easy.
˝ What about large and complex ones?

It’s time to discus abstraction.
Objectives

˝ Understand what abstraction is
˝ Gain confidence in the idea of abstraction
˝ Understand how to reduce a design via abstraction

Abstraction Formally

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Ź Formal

Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

156 / 285

Formally, if

AÑ C

then we can also say that

pABq Ñ C

Formal Proof

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Ź Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

157 / 285

Shall we go over the proof?

AÑ C ñ A_ C “ True

True or anything is still true, so

p A_ Cq _ B

Rearranging terms

 A_ B _ C

 pABq _ C

Expressing as an implication

pABq Ñ C

Q.E.D.!

So what?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Ź Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

158 / 285

With every additional module,

˝ Formal verification becomes more difficult
˝ Complexity increases exponentially
˝ You only have so many hours and dollars

On the other hand,

˝ Anything you can simplify by abstraction . . .
˝ is one less thing you need to prove

In Pictures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

159 / 285

Suppose your state space looked like this

˝ It takes many transitions required to get to interesting states

In Pictures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

160 / 285

Suppose we added to this design . . .

˝ Some additional states, and
˝ Additional transitions

The real states and transitions must still remain

In Pictures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

161 / 285

If this new design still passes, then . . .

˝ Since the original design is a subset . . .
˝ The original design must also still pass

If done well, the new design will require less effort to prove

A CPU

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

162 / 285

Where would you start?

A CPU

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

162 / 285

Where would you start?

At the interfaces!

Prefetch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

163 / 285

Let’s consider a prefetch module as an example.

If you do this right,

˝ Any internally consistent Prefetch,
˝ that properly responds to the CPU, and
˝ interacts properly with the bus,
˝ must work!

Care to try a different prefetch approach?

Prefetch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

164 / 285

Suppose the prefetch was just a shell

It would still interact properly with

˝ The bus, and
˝ The CPU
˝ It just might not return values from the bus to the CPU

Prefetch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

165 / 285

Suppose the prefetch was just a shell

If the CPU still acted “correctly”

˝ With either the right, or the wrong instructions, then
˝ The CPU must act correctly with the right instructions

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝

If
And
Then

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ Prefetch is bus master, interfaces w/CPU

If (Prefetch responds to CPU insn requests)
And (Prefetch produces the right instructions)
Then (The prefetch works within the design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ The CPU is just a wishbone master within a design

If (The CPU is valid bus master)
And (CPU properly executes instructions)
Then (CPU works within a design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ The ALU must return a calculated number

If (ALU returns a value when requested)
And (It is the right value)
Then (The ALU works within the design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ A flash device responds in 8-80 clocks

If (Bus master reads/responds to a request)
And (The response comes back in 8-80 clocks)
Then (The CPU can interact with a flash memory)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ The divide must return a calculated number

If (Divide returns a value when requested)
And (It is the right value)
Then (The divide works within the design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

166 / 285

Consider these statements:

˝ Formal solvers break down when applied to multiplies

If (Multiply unit returns an answer N clocks later)
And (It is the right value)
Then (The multiply works within the design)

Abstracted CPU components

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

167 / 285

Looking at the CPU again,

˝ Replace all the components with abstract shells
˝ . . . shells that might produce the same answers

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

168 / 285

Let’s consider a fractional counter:

s i gna l r_count : unsigned (31 downto 0) := 0 ;
´́ ´́
process (i_clk)
begin

i f (rising_edge (i_clk)) then
(o_pps , r_count) <= resize (r_count , 33) + 43 ;

end i f ;
end process ;

The problem with this counter

˝ It will take 100ˆ 10
6 clocks to roll over and set o_pps

˝ Formally checking 100ˆ 10
6 clocks is prohibitive

We’ll need a better way, or we’ll never deal with this

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

169 / 285

How might we build an abstract counter?

˝ First, create an arbitrary counter increment

s i gna l increment : unsigned (31 downto 0)
:= to_unsigned (1 , 3 2) ;

a t t r i bu te anyseq of increment : s i gna l i s ’ 1 ’ ;
´́ ´́
process (i_clk)
begin

i f (rising_edge (i_clk)) then
(o_pps , r_count) <= resize (r_count , 33)

+ increment ;
end i f ;

end process ;

rollover <= ´r_count ;

We’ll constrain this increment next

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

170 / 285

How might we build an abstract counter?

˝ First, create an arbitrary counter increment
˝ Then constrain the arbitrary increment

always @ (∗)
begin

assume (increment > 0) ;
assume (increment < { 2 ’h1 , 30 ’h0 }) ;
i f (rollover < 32 ’ d43)

assume (increment == 32 ’ d43) ;
e l s e

assume (increment < rollover) ;
end

The correct increment, 43, must be a possibility

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

171 / 285

Will this work?

˝ Let’s try this to see!

always @ (posedge i_clk)
i f (f_past_valid)

as se r t (r_count != $past (r_count)) ;

always @ (posedge i_clk)
i f ((f_past_valid)&&(r_count < $past (r_count)))

as se r t (o_pps) ;

Other Possibilities

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

172 / 285

How else might you use this?

˝ Bypassing the runup for an external peripheral
˝ Testing a real-time clock or date

Or . . . how about that CPU?

Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

173 / 285

Let’s modify this abstract counter

˝ Increment by one, rather than fractionally

Exercise Objectives:

˝ Prove a design works both with and without abstraction
˝ Gain some confidence using abstraction

Exercise #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

174 / 285

Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Build it so that . . .

always @ (∗)
as se r t (o_carry == (r_count == 0)) ;

// and

always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past(&r_count)))

as se r t (! o_carry) ;

˝ Prove that this abstracted counter works

Exercise #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

175 / 285

Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Prove that this abstracted counter works

Exercise #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

175 / 285

Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Prove that this abstracted counter works

Hints:

˝ &r_count must take place before r_count==0

˝ You cannot skip &r_count

˝ Neither can you skip r_count == 0

Invariants

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Ź Invariants

Lesson Removed

Multiple-Clocks

Cover

Sequences

Parting Thoughts

176 / 285

Lesson Removed

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Ź Lesson Removed

Multiple-Clocks

Cover

Sequences

Parting Thoughts

177 / 285

This lesson is currently being revised, and will be released again
shortly

Multiple-Clocks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Ź Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

178 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Ź Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

179 / 285

The SymbiYosys option multiclock . . .

˝ Used to process systems with dissimilar clocks
˝ Examples

– A serial port, with a formally generated transmitter
coming from a different clock domain

– A SPI controller that needs both high speed and low
speed logic

Our Objective:

˝ To learn how to handle multiple clocks within a design

– (∗ gclk ∗)

– $stable, $changed
– $rose, $fell

SymbiYosys config change

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

Ź SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

180 / 285

[opt ions]
mode prove

mult ic lock on

[engines]
smtbmc

[s c r i p t]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys config change

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

Ź SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

180 / 285

[opt ions]
mode prove

mult ic lock on Multiple clocks require this line

[engines]
smtbmc

[s c r i p t]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[f i l e s]
f i l e l i s t

Five Tools

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

Ź SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

181 / 285

˝ (∗ gclk ∗)

Provides access to the global formal time-step
˝ $stable

True if a signal is stable (i.e. doesn’t change) with this clock.
Equivalent to A == $past(A)

˝ $changed

True if a signal has changed since the last clock tick.
Equivalent to A != $past(A)

˝ $rose

True if the signal rises on this formal time-step
This is very useful for positive edged clocks transitions
$rose(A) is equivalent to (A[0])&&(!$past(A[0]))

˝ $fell

True if a signal falls on this time-step, creating a negative
edge
$fell (A) is equivalent to (!A[0])&&($past(A[0]))

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

182 / 285

˝ A global formal time step

(∗ gclk ∗) wire gbl_clk ;

˝ You can use this to describe clock properties

// Assume a s i n g l e c l o c k s i g n a l
//
reg f_last_clk ;

i n i t i a l f_last_clk = 0 ;
always @ (posedge gbl_clk)
begin

f_last_clk <= ! f_last_clk ;
assume (i_clk == f_last_clk) ;

end

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

183 / 285

always @ (posedge gbl_clk)
begin

f_last_clk <= ! f_last_clk ;
assume (i_clk == f_last_clk) ;

end

f last clk

i clk

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

184 / 285

˝ Used to gain access to the formal time-step

(∗ gclk ∗) wire gbl_clk ;

˝ You can use this to describe clock properties

// Assume two r e l a t e d c l o c k s i g n a l s
//
reg [2 : 0] f_clk_counter ;

i n i t i a l f_clk_counter = 0 ;
always @ (posedge gbl_clk)
begin

f_clk_counter <= f_clk_counter + 1 ’b1 ;
assume (i_clk_fast == f_clk_counter [0]) ;
assume (i_clk_slow == f_clk_counter [2]) ;

end

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

185 / 285

The clock logic on the last slide forces these two clocks to be in
sync
f clk counter 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

i clk fast

i clk slow

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

186 / 285

˝ Used to gain access to the formal time-step
˝ You can use this to describe clock properties

// Assume two c l o ck s , same speed ,
// unknown con s t an t phase o f f s e t
(∗ gclk ∗) wire gbl_clk ;
(∗ anyconst ∗) wire [2 : 0] f_clk_offset ;

i n i t i a l f_clk_counter= 0 ;
always @ (posedge gbl_clk)
begin

f_clk_counter <= f_clk_counter + 1 ’b1 ;
f_clk_two <= f_clk_counter

+ f_clk_offset ;
assume (i_clk_one == f_clk_counter [2]) ;
assume (i_clk_two == f_clk_two [2]) ;

end

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

187 / 285

The formal tool will pick the phase offset between these two
generated clock waveforms
f clk counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i clk one

i clk two

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

188 / 285

How might you describe two unrelated clocks?

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

188 / 285

How might you describe two unrelated clocks?

(∗ gclk ∗) wire gbl_clk ;
(∗ anyconst ∗) wire [7 : 0] f_a_step ;
always @ (∗)
assume ((f_a_step > 0) &&(f_a_step [7] == 1 ’b0)) ;

always @ (posedge gbl_clk)
begin

f_a_counter <= f_a_counter + f_a_step ;

assume (i_clk_a == f_a_counter [7]) ;
end

˝ The (∗ anyconst ∗) register may take on any constant value
˝ You can repeat this logic for the second clock.

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

189 / 285

The timing relationship between these two clocks can be
anything

˝ Each clock can have an arbitrary frequency
˝ Each clock can have an arbitrary phase

Here’s a theoretical example trace

i_clk_a

i_clk_b

Don’t be surprised by the appearance of phase noise

Bonus: The trace above isn’t realistic. Why not?

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

190 / 285

Synchronous logic has some requirements

˝ Inputs should only change on a clock edge
They should be stable otherwise

˝ $rose(i_clk) can be used to express this

Here’s an example using $rose(i_clk) . . .

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

assume (i_input == $past (i_input)) ;

$fell

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

191 / 285

$fell is like $rose, only it describes a negative edge

i_clk

$rose(i_clk)

$fell (i_clk)

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

192 / 285

Let’s go back to the synchronous logic requirements

˝ Inputs only change on clock edges
˝ $rose(i_clk) and $fell (i_clk) can be used to express this
˝ Let’s try this out

Would this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (i_input == $past (i_input)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

192 / 285

Let’s go back to the synchronous logic requirements

˝ Inputs only change on clock edges
˝ $rose(i_clk) and $fell (i_clk) can be used to express this
˝ Let’s try this out

Would this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (i_input == $past (i_input)) ;

˝ No. The general rule hasn’t changed

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

193 / 285

Could we do it this way?

always @ (posedge gbl_clk)
i f ($ f e l l (i_clk))

as se r t (state == $past (state)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

193 / 285

Could we do it this way?

always @ (posedge gbl_clk)
i f ($ f e l l (i_clk))

as se r t (state == $past (state)) ;

˝ No, this doesn’t work either

i_clk

state Stable Unconstrained Stable Unconstrained

$fell (i_clk)

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

194 / 285

Is this equivalent?

always @ (posedge gbl_clk)
i f (! $past (i_clk))

as se r t (state == $past (state)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

194 / 285

Is this equivalent?

always @ (posedge gbl_clk)
i f (! $past (i_clk))

as se r t (state == $past (state)) ;

˝ Why not?

i_clk

state Unconstrained Stable Uncon No change Uncon

!$past(i_clk)

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

195 / 285

This fixes our problems. Will this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (state == $past (state)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

195 / 285

This fixes our problems. Will this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (state == $past (state)) ;

˝ Not quite. Can you see the problem?

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

196 / 285

˝ State/outputs should be clock synchronous

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(!$rose (i_clk))

as se r t (state == $past (state)) ;

˝ With f_past_valid this works

i_clk

state Stable Stable Stable

f_past_valid

!$rose(i_clk)

˝ $rose requires a clock, such as
always @(posedge gbl_clk)

$stable

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

Ź $stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

197 / 285

Describes a signal which has not changed

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(! $rose (i_clk)))

as se r t ($stab le (state)) ;

˝ Requires a clock edge

always @(posedge gbl_clk)

always @(posedge i_clk)

˝ This is basically the same as state == $past(state)

$stable

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

Ź $stable

Examples

Exercises

Cover

Sequences

Parting Thoughts

198 / 285

Caution: $stable(X) might still change between clock edges

always @ (posedge i_clk)
assume ($stab le (i_value)) ;

The waveform below would satisfy the assumption above

i_clk

i_value 0 1 0 1 0 1 0 1 0 1 0

$past(i_value) 0 0 0

$stable(i_value)

The key to understanding what’s going on is to realize . . .

˝ The assumption is only evaluated on @(posedge i_clk)

˝ $past(i_value) is only sampled @(posedge i_clk)

˝ . . . and not on the formal (∗ gclk ∗) time step.

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

199 / 285

˝ Most logic doesn’t need the multiclock option
˝ To help with logic that might need it, I use a parameter

parameter [0 : 0] F_OPT_CLK2FFLOGIC = 1 ’b0 ;

generate i f (F_OPT_CLK2FFLOGIC)
begin

(∗ gclk ∗) wire gbl_clk ;

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(!$rose (i_clk)))
begin

assume ($stab le (i_axi_awready)) ;
assume ($stab le (i_axi_wready)) ;
// . . .

end
end endgenerate

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

200 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

200 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

i n i t i a l a s se r t (o_CS_n) ;
i n i t i a l a s se r t (o_SCK) ;

always @ (∗)
i f (! o_SCK)

as se r t (! o_CS_n) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

201 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

always @ (posedge gbl_clk)
i f ((f_past_valid)

&&(($rose (o_CS_n)) | | ($ f e l l (o_CS_n))))
as se r t ((o_SCK)&&($stab le (o_SCK))) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

202 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe o_MOSI?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

202 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe o_MOSI?

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(!o_CS_n)&&(! $ f e l l (o_SCK)))

as se r t ($stab le (o_MOSI)) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

203 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe i_MISO?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

203 / 285

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe i_MISO?

always @ (posedge gbl_clk)
i f ((! o_CS_n)&&(o_SCK))

assume ($stab le (i_MISO)) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

204 / 285

o CS n

o SCK

o MOSI

i MISO

˝ Should the i_MISO be able to change more than once per
clock?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

205 / 285

˝ A little logic will force i_MISO to have only one transition per
clock

always @ (posedge gbl_clk)
i f ((o_CS_n) | | (o_SCK))

f_chgd <= 1 ’b0 ;
e l s e i f (i_MISO != $past (i_MISO))

f_chgd <= 1 ’b1 ;

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(f_chgd))

assume ($stab le (i_MISO)) ;

˝ How would we force exactly 8 o_SCK clocks?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Parting Thoughts

206 / 285

˝ Forcing exactly 8 clocks

always @ (posedge gbl_clk)
i f (o_CS_n)

f_spi_bits <= 0 ;
e l s e i f ($rose (o_SCK))

f_spi_bits <= f_spi_bits + 1 ’b1 ;

always @ (posedge gbl_clk)
i f ((f_past_valid)&&($rose (o_CS_n)))

as se r t (f_spi_bits == 8) ;

˝ Don’t forget the induction requirement

always @ (∗)
as se r t (f_spi_bits <= 8) ;

Exercises

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

207 / 285

Three exercises, chose one to verify:

1. Input serdes
exercises-09/iserdes.vhd

2. Clock gate
exercises-10/clkgate.vhd

3. Clock Switch
exercises-11/clkswitch.vhd

Ex: Input Serdes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

208 / 285

Getting a SERDES right is a good example of multiple clocks

i fast clk

i pin

i slow clk

o word 0x0b

Ex: Input Serdes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

209 / 285

Getting a SERDES right is a good example of multiple clocks

˝ Two clocks, one fast and one slow

Clocks must be synchronous
$rose(slow_clk) implies $rose(fast_clk)

˝ exercise-09/ Contains the file iserdes.v
˝ Can you formally verify that it works?

Ex: Input Serdes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

210 / 285

Be aware of the asynchronous reset signal!

i areset n

i fast clk

i pin

i slow clk

o word Prior value RESET RESET

˝ Can be asserted at any time
˝ Can only be de-asserted on $rose(i_slow_clk)

˝ assume() these properties, since the reset is an input

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

211 / 285

The goal: a clock that can be gated, that doesn’t glitch

˝ exercise-10/ Contains the file clkgate.vhd

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

212 / 285

The goal: a clock that can be gated, that doesn’t glitch

i clk

i en

o clk

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

213 / 285

The goal: a clock that can be gated, that doesn’t glitch

˝ One clock, one unrelated enable
˝ Prove that the output clock

– is always high for the full width, but
– . . . never longer.
– For any clock rate

See exercise-10/clkgate.v

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

214 / 285

Hints:

˝ The output clock should only rise if the incoming clock rises
˝ The output clock should only fall if the incoming clock fall
˝ If the output clock is ever high, it should always fall with the

incoming clock

Be aware of the reset! The output clock might fall mid-clock
period due to the asynchronous reset.

Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

215 / 285

Goal: To safely switch from one clock frequency to another

Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

216 / 285

Goal: To safely switch from one clock frequency to another

˝ Inputs

– Two arbitrary clocks
– One select line

Prove that the output clock

˝ Is always high (or low) for at least the duration of one of the
clocks

˝ Doesn’t stop

You may need to constrain the select line.

Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Parting Thoughts

217 / 285

Hints:

˝ You may assume the reset is only ever initially true
˝ Only one set of FF’s should ever change at any time

Cover

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Ź Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

218 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Ź Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

219 / 285

The cover element is used to make certain something remains
possible

˝ BMC and induction test safety properties
They prove that something will not happen

˝ Cover tests a liveness property
It proves that something may happen

Objectives

˝ Understand why cover is important
˝ Understand how to use cover

Why Cover

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Ź Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

220 / 285

Personal examples:

˝ Forgot to set f_past_valid to one
Many assertions were ignored

˝ Av to WB bridge, passed FV, but couldn’t handle writes
˝ Error analysis

The simulation trace doesn’t make sense. Can it be
reproduced?

˝ As an anti-assertion
Can this situation actually happen?

What is cover good for? Catching the careless assumption!
What else? Ad hoc simulation traces!

BMC vs Cover

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

Ź BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

221 / 285

Cover is more like BMC than Induction is

˝ BMC

˝ Cover

˝ BMC searches for failures
˝ Cover searches for a success

Formally, we might say . . .

˝ BMC + k-Induction: proof for all
@assume()ñ @assert()

˝ Cover: there exists one
@assume()ñ Dcover()

Cover in Verilog

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Ź Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

222 / 285

Just like an assumption or an assertion

// Make s u r e a w r i t e i s p o s s i b l e
always @ (posedge i_clk)
cover ((o_wb_stb)&&(!i_wb_stall)&&(o_wb_we)) ;

// Or

// What happens when a bus c y c l e i s abo r t ed ?
always @ (posedge i_clk)
i f (i_reset)

cover ((o_wb_cyc)&&(f_wb_outstanding >0)) ;

Well, almost but not quite.

Cover in Verilog

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Ź Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

223 / 285

Assert and cover handle surrounding logic differently

˝ Assert logic

always @ (posedge i_clk)
i f (A)

as se r t (B) ;

is equivalent to,

always @ (posedge i_clk)
as se r t ((! A) | | (B)) ;

This is not true of cover.

Cover in Verilog

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Ź Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

224 / 285

Assert and cover handle surrounding logic differently

˝ Assert logic
˝ Cover logic

always @ (posedge i_clk)
i f (A)

cover (B) ;

is equivalent to,

always @ (posedge i_clk)
cover ((A) && (B)) ;

// NOT the same as
// a s s e r t ((!A) | | (B)) ;

State Space

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

Ź State Space

SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

225 / 285

˝ Goal is to prove certain state’s are reachable
˝ Prover solves for example traces

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

226 / 285

The SymbiYosys script for cover needs to change as well

˝ SymbiYosys needs the option: mode cover

˝ Produces one trace per cover() statement
. . . or fail

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

227 / 285

[opt ions]
mode cover

depth 40
append 20

[engines]
smtbmc

[s c r i p t]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

227 / 285

[opt ions]
mode cover Run a coverage analysis
depth 40
append 20

[engines]
smtbmc

[s c r i p t]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

227 / 285

[opt ions]
mode cover

depth 40 How far to look for a covered state
append 20

[engines]
smtbmc

[s c r i p t]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

227 / 285

[opt ions]
mode cover

depth 40
append 20 Follow each trace with 20 extra clocks

[engines]
smtbmc

[s c r i p t]
read ´vhdl module . vhd
read ´formal module_vhd . sv
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf Run two tasks: prf and cvr
cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf

cvr

[opt ions]
prf : mode prove The prf tasks runs induction
cvr : mode cover

depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover The cvr tasks runs in cover mode
depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40 The same depth can apply to both

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

% sby -f sbyfil.sby now runs both modes

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

228 / 285

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

% sby -f sbyfil.sby cvr will run the cover mode alone

Cover Failures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Parting Thoughts

229 / 285

Two basic types of cover failures

1. Covered state is unreachable
No VCD file will be generated upon failure

2. Covered state is reachable, but only by breaking assertions
VCD file will be generated

Ex: I-Cache

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Parting Thoughts

230 / 285

Consider a CPU I-cache:

always @ (posedge i_clk)
cover (o_valid) ;

With no other formal logic, what will this trace look like?

˝ CPU must provide a PC address
˝ Design must fill the appropriate cache line
˝ Design returns an item from that cache line

That’s a lot of trace for two lines of HDL!

Ex: Flash

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Parting Thoughts

231 / 285

Consider a Flash controller:

always @ (posedge i_clk)
cover (o_wb_ack) ;

With no other formal logic, what will this trace look like?
The controller must,

˝ Initialize the flash device
˝ Accept a bus request
˝ Request a read from the flash
˝ Accumulate the result to return on the bus

Ex: MMU

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Parting Thoughts

232 / 285

Consider a Memory Management Unit (MMU):

always @ (posedge i_clk)
cover (o_wb_ack) ;

The MMU must,

˝ Be told a TLB entry
˝ Accept a bus request
˝ Look the request up in the TLB
˝ Forward the modified request downstream
˝ Wait for a return
˝ Forward the value returned upstream

Ex: SDRAM

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Parting Thoughts

233 / 285

How about an SDRAM controller?

always @ (posedge i_clk)
cover (o_wb_ack) ;

The controller must,

˝ Initialize the SDRAM
˝ Accept a bus request
˝ Activate a row on a bank
˝ Issue a read (or write) command from that row
˝ Wait for a return value
˝ Return the result

Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

234 / 285

Remember our counter?

s i gna l counts : unsigned (15 downto 0)
:= to_unsigned (0 , 1 6) ;

´́ ´́ ´
process (i_clk)
begin

i f (rising_edge (i_clk)) then
i f ((i_start_signal = ’1 ’)

and (0 = counts)) then
counts <= to_unsigned (MAX_AMOUNT´1, 1 6) ;

e l s e
counts <= counts ´ 1 ;

end i f ;
end i f ;

end process ;

o_busy <= ’1 ’ when (0 = counts) e l s e ’ 0 ’ ;

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

235 / 285

Let’s add some cover statements. . .

// T r a n s i t i o n to busy
always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past (o_busy)))

cover (o_busy) ;

// T r a n s i t i o n back to i d l e
always @ (posedge i_clk)
i f ((f_past_valid)&&($past (o_busy)))

cover (! o_busy) ;

// Mid´c y c l e
always @ (posedge i_clk)

cover (counter == 3) ;

Will SymbiYosys find traces?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

236 / 285

How about now?

always @ (posedge i_clk)
cover ((o_busy)&&(counter == 0)) ;

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

236 / 285

How about now?

always @ (posedge i_clk)
cover ((o_busy)&&(counter == 0)) ;

Or this one,

always @ (posedge i_clk)
cover (counter == MAX_AMOUNT) ;

Will these succeed?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

236 / 285

How about now?

always @ (posedge i_clk)
cover ((o_busy)&&(counter == 0)) ;

Or this one,

always @ (posedge i_clk)
cover (counter == MAX_AMOUNT) ;

Will these succeed? No. Both will fail

˝ These are outside the reachable state space

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

237 / 285

What if the state is unreachable?

// Keep the coun t e r from ev e r s t a r t i n g
always @ (∗)

assume (! i_start_signal) ;

always @ (posedge i_clk)
cover (counter != 0) ;

Will this succeed?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

237 / 285

What if the state is unreachable?

// Keep the coun t e r from ev e r s t a r t i n g
always @ (∗)

assume (! i_start_signal) ;

always @ (posedge i_clk)
cover (counter != 0) ;

Will this succeed? No. This will fail with no trace.

˝ If i_start_signal is never true, the cover cannot be reached

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

238 / 285

What if an assertion needs to be violated?

always @ (∗)
as se r t (counter != 10) ;

always @ (posedge i_clk)
cover (counter == 4) ;

What will happen here?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

238 / 285

What if an assertion needs to be violated?

always @ (∗)
as se r t (counter != 10) ;

always @ (posedge i_clk)
cover (counter == 4) ;

What will happen here?

˝ Cover statement is reachable
˝ But requires an assertion failure, so a trace is generated

Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

239 / 285

Covering the clock switch

˝ Shows the clock switching from fast to slow,
˝ and again from slow to fast

Ex #7 Revisited

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

240 / 285

Return to your Wishbone arbiter. Let’s cover four cases:

1. Cover both A and B receiving the bus
2. Cover how B will get the bus after A gets an

acknowledgement
3. Cover how A will get the bus after B gets an

acknowledgement
4. Add to the last cover

˝ B must request while A still holds the bus

Plot and examine traces for each cases. Do they look right?

˝ If everything works, the first case showing both A and B
receiving the bus will FAIL

˝ No trace is needed from that case
˝ After getting this failure, you may want to remove it from

your cover checks

Ex #7 Revisited

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

241 / 285

Notice what we just proved:

1. The arbiter will allow both sources to master the bus
2. The arbiter will transition from one source to another
3. The arbiter won’t starve A or B

This wasn’t possible with just the safety properties (assert
statements)

Discussion

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Parting Thoughts

242 / 285

When should you use cover?

Sequences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Ź Sequences

Overview

Clocking

Sequences

Exercise

Parting Thoughts

243 / 285

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

244 / 285

SystemVerilog has some amazing formal properties

˝ property can be assumed or asserted
By rewriting our assert’s and assume’s as properties, we can
then control when they are asserted or assumed better.

˝ bind formal properties to a subset of your design
Allows us to (finally) separate the properties from the module
they support

˝ sequence – A standard property description language

Objectives

˝ Learn the basics of SystemVerilog Assertions
˝ Gain confidence with yosys+verific

Building on the past

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

245 / 285

Much of what we’ve written can easily be rewritten in SVA

always @ (∗)
i f (A)

as se r t (B) ;

can be rewritten as,

as se r t property (@ (posedge i_clk)
A |´> B) ;

Note that this is now a clocked assertion, but otherwise it’s
equivalent

Building on the past

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

246 / 285

Much of what we’ve written can easily be rewritten in SVA

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (A)))

as se r t (B) ;

Can be rewritten as,

as se r t property (@ (posedge i_clk)
A |=> B) ;

Building on the past

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

246 / 285

Much of what we’ve written can easily be rewritten in SVA

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (A)))

as se r t (B) ;

Can be rewritten as,

as se r t property (@ (posedge i_clk)
A |=> B) ;

˝ Read this as A implies B on the next clock tick.
˝ No f_past_valid required anymore. This is a statement

about the next clock tick, not the last one.

These equivalencies apply to assume() as well

Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

247 / 285

You can also declare properties:

property SIMPLE_PROPERTY ;
@ (posedge i_clk) a |=> b ;

endproperty

as se r t property (SIMPLE_PROPERTY) ;

This would be the same as

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (a)))

as se r t (b) ;

Assume vs Assert

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

248 / 285

You could also do something like:

parameter [0 : 0] F_SUBMODULE = 1 ’b0 ;

generate i f (F_SUBMODULE)
begin

assume property (INPUT_PROP) ;
end e l s e begin

as se r t property (INPUT_PROP) ;
end endgenerate

as se r t property (LOCAL_PROP) ;
as se r t property (OUTPUT_PROP) ;

This would work quite nicely for a bus property file

Parameterized Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

249 / 285

Properties can also accept parameters

property IMPLIES (a , b) ;
@ (posedge i_clk)
a |´> b ;

endproperty

as se r t property (IMPLIES (x , y)) ;

Parameterized Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Sequences

Exercise

Parting Thoughts

250 / 285

Properties can also accept parameters

property IMPLIES_NEXT (a , b) ;
@ (posedge i_clk) a |=> b ;

endproperty

as se r t property (IMPLIES_NEXT (x , y)) ;

Remember, if you want to use |=>, $past, etc., you need to
define a clock.

Clocking

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Ź Clocking

Sequences

Exercise

Parting Thoughts

251 / 285

Getting tired of writing @(posedge i_clk)?

˝ You can set a default clock

de fau l t c lock ing @ (posedge i_clk) ;
endclocking

Assumes i_clk if no clock is given.

Clocking

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Ź Clocking

Sequences

Exercise

Parting Thoughts

252 / 285

Getting tired of writing @(posedge i_clk)?

˝ You can set a default clock
˝ You can set a default clock within a given block

c lock ing @ (posedge i_clk) ;
// Your p r o p e r t i e s can go he r e
// As wi th a s s e r t , assume ,
// sequence , e t c .

endclocking

Assumes i_clk for all of the properties within the clocking
block.

Sequences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

253 / 285

So far with properties,

˝ We haven’t done anything really all that new.
˝ We’ve just rewritten what we’ve done before in a new form.

Sequences are something new

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

254 / 285

With sequences, you can

˝ Specify a series of actions

sequence EXAMPLE ;
@ (posedge i_clk) a ##1 b ##1 c ##1 d ;

endsequence

In this example, b always follows a by one clock, c follows b,
and d follows c

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

255 / 285

With sequences, you can

˝ Specify a series of actions, separated by some number of
clocks

sequence EXAMPLE ;
@ (posedge i_clk) a ##2 b ##5 c ;

endsequence

In this example, b always follows a two clocks later, and c
follows five clocks after b

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

256 / 285

With sequences, you can

˝ Specify a series of predicates, separated in time
˝ Can express range(s) of repeated values

sequence EXAMPLE ;
@ (posedge i_clk) b [∗ 2 : 3] ##1 c ;

endsequence
// i s e q u i v a l e n t to . . .
sequence EXAMPLE_A_2x ; // 2x

@ (posedge i_clk) b ##1 b ##1 c ;
endsequence
// or
sequence EXAMPLE_A_3x ; // 3x

@ (posedge i_clk) b ##1 b ##1 b ##1 c ;
endsequence

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

257 / 285

With sequences, you can

˝ Specify a series of predicates, separated in time
˝ Can express range(s) of repeated values

– [∗0:M] Predicate may be skipped
– [∗N:M] specifies from N to M repeats
– [∗N:$] Repeats at least N times, with no maximum

Ranges can include empty sequences, such as ##[∗0:4]

˝ Compose multiple sequences together

– AND, seq_1 and seq_2

– OR, seq_1 or seq_2

– NOT, not seq

And vs Intersect

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

258 / 285

The and and intersect operators are very similar

˝ and is only true if both sequences are true
˝ intersect is only true if both sequences are true and have the

same length

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

259 / 285

˝ Throughout

sequence A ;
@ (posedge i_clk)
(EXP) [∗ 0 : $] i n t e r s e c t SEQ ;

endsequence

is equivalent to

sequence B ;
@ (posedge i_clk)
(EXP) throughout SEQ ;

endsequence

The EXP expression must be true from now until SEQ ends

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

260 / 285

˝ Throughout
˝ Until

property A ;
@ (posedge i_clk)
(E1) [∗ 0 : $] ##1 (E2) ;

endproperty

is equivalent to

property B ;
@ (posedge i_clk)
(E1) un t i l E2 ;

endproperty

˝ until can only be used in a property, not within a sequence

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

260 / 285

˝ Throughout
˝ Until

property A ;
@ (posedge i_clk)
(E1) [∗ 0 : $] ##1 (E2) ;

endproperty

is equivalent to

property B ;
@ (posedge i_clk)
(E1) un t i l E2 ;

endproperty

˝ until can only be used in a property, not within a sequence

˝ There is an ugly subtlety here

– Must E2 ever take place?

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

261 / 285

˝ Throughout
˝ Until
˝ Within

sequence A ;
@ (posedge i_clk)
(1 [∗ 0 : $] ##1 S1 ##1 1 [∗ 0 : $])

i n t e r s e c t S2 ;
endsequence

is equivalent to

sequence B ;
@ (posedge i_clk)
(S1) with in S2 ;

endsequence

Returning to Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

262 / 285

Properties can reference sequences

˝ Directly

as se r t property (seq) ;
as se r t property (expr |´> seq) ;

˝ Implication: sequences can imply properties

as se r t property (seq |´> some_other_property) ;
as se r t property (seq |=> another_property) ;

Returning to Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

263 / 285

Properties can include . . .

˝ if statements

as se r t property (i f (A) P1 e l s e P2) ;

˝ not, and, or even or statements

as se r t property (not P1) ;
as se r t property (P1 and P2) ;
as se r t property (P1 or P2) ;

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

264 / 285

A bus request will not change until it is accepted

property BUS_REQUEST_HOLD ;
@ (posedge i_clk)
(STB)&&(STALL)
|=> (STB)&&($stab le (REQUEST)) ;

endproperty

as se r t property (BUS_REQUEST_HOLD) ;

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

265 / 285

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

You no longer need to count stalls yourself.

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

265 / 285

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

You no longer need to count stalls yourself.
Could we do this with an until statement?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

266 / 285

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
(STB)&&(STALL) un t i l (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

What is the difference?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

266 / 285

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
(STB)&&(STALL) un t i l (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

What is the difference? The until statement goes forever, our
prior example was limited to MAX_STALL clock cycles.

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

266 / 285

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
(STB)&&(STALL) un t i l (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

What is the difference?

But . . . what happens if RESET is asserted?

Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

267 / 285

A property can be conditionally disabled

sequence BUS_REQUEST ;
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (
@ (posedge i_clk)
d i sab l e iff (i_reset)
STB |´> BUS_REQUEST) ;

The assertion will no longer fail if i_reset clears the request
What if the request is aborted?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

268 / 285

A property can be conditionally disabled

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
STB |´> BUS_REQUEST) ;

Will this work?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

268 / 285

A property can be conditionally disabled

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
STB |´> BUS_REQUEST) ;

Will this work? Yes!

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

269 / 285

Some peripherals will only ever accept one request

sequence SINGLE_ACK (MAX_DELAY) ;
@ (posedge i_clk)
(! ACK)&&(STALL) [∗ 0 : MAX_DELAY]
##1 (ACK)&&(!STALL) ;

endsequence

as se r t property (
d i sab l e iff ((i_reset) | | (! CYC))
(STB)&&(!STALL) |=> SINGLE_ACK (3 2) ;
) ;

This peripheral will

˝ Stall up to 32 clocks following any accepted request, until it
˝ Acknowledges the request, and
˝ Releases the bus on the same cycle

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

270 / 285

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL (DELAY) ;
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
(STB) |´> ##[∗DELAY] (ACK) ;

endproperty

as se r t property (NEVER_STALL (DELAY)
and (! STALL)) ;

This is illegal. Can you spot the bug?

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

270 / 285

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL (DELAY) ;
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
(STB) |´> ##[∗DELAY] (ACK) ;

endproperty

as se r t property (NEVER_STALL (DELAY)
and (! STALL)) ;

This is illegal. Can you spot the bug? What logic does the
disable iff apply to?

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

271 / 285

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL (DELAY) ;
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
(STB) |´> ##[∗DELAY] (ACK) ;

endproperty

as se r t property (NEVER_STALL (DELAY)) ;
as se r t property (! STALL) ;

This is valid

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

272 / 285

Cannot ACK or ERR when no request is pending

as se r t property (@ (posedge i_clk)
((! i_CYC) | | (i_reset))
##1 ((! i_CYC) | | (i_reset))
|´> ((! o_ACK)&&(!o_ERR)) ;

Or as we did it before

always @ (posedge i_clk)
i f ((f_past_valid)

&&(($past (i_reset)) | | (! $past (i_CYC)))
&&((i_reset) | | (! i_CYC))
as se r t ((! o_ACK)&&(!o_ERR)) ;

Which is simpler to understand?

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

273 / 285

Let’s look at an serial port transmitter example.
A baud interval is CKS clocks . . .

˝ Output data is constant
˝ Logic doesn’t change state
˝ Internal shift register value is known
˝ Ends with zero_baud_counter

sequence BAUD_INTERVAL (CKS , DAT , SR , ST) ;
((o_uart_tx == DAT)&&(state == ST)

&&(lcl_data == SR)
&&(!zero_baud_counter)) [∗ (CKS´1)]

##1 (o_uart_tx == DAT)&&(state == ST)
&&(lcl_data == SR)
&&(zero_baud_counter))

endsequence

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

274 / 285

A byte consists of 10 Baud intervals

sequence SEND (CKS , DATA) ;
BAUD_INTERVAL (CKS , 1 ’b0 , DATA , 4 ’h0)
##1 BAUD_INTERVAL (CKS , DATA [0] ,

{{ (1){1 ’ b1 }} , DATA [7 : 1] , 4 ’h1)
##1 BAUD_INTERVAL (CKS , DATA [1] ,

{{ (2){1 ’ b1 }} , DATA [7 : 2] , 4 ’h2)
//
##1 BAUD_INTERVAL (CKS , DATA [6] ,

{{ (7){1 ’ b1 }} , DATA [7] , 4 ’h7)
##1 BAUD_INTERVAL (CKS , DATA [7] ,

7 ’hff , DATA [7] , 4 ’h8)
##1 BAUD_INTERVAL (CKS , 1 ’b1 , 8 ’hff , 4 ’h9) ;

endsequence

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

275 / 285

Transmitting a byte requires

always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

fsv_data <= i_data ;

as se r t property (@ (posedge i_clk)
(i_wr)&&(!o_busy)
|=> ((o_busy) throughout

SEND (CLOCKS_PER_BAUD , fsv_data))
##1 ((! o_busy)&&(o_uart_tx)

&&(zero_baud_counter)) ;

˝ A transmit request is received
˝ The data is sent
˝ The controller returns to idle

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

276 / 285

Transmitting a byte requires

as se r t property (@ (posedge i_clk)
(i_wr)&&(!o_busy)
|=> ((o_busy) throughout

SEND (CLOCKS_PER_BAUD , fsv_data))
##1 ((! o_busy)&&(o_uart_tx)

&&(zero_baud_counter)) ;

Make sure . . .

˝ The sequence has a defined beginning
Only ever triggered once at a time

˝ Doesn’t reference changing data
˝ throughout is within parenthesis
˝ You tie all relevant state information together

SysVerilog Conclusions

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Sequences

Exercise

Parting Thoughts

277 / 285

SystemVerilog Concurrent Assertions . . .

˝ can be very powerful
˝ can be very confusing
˝ can be used with immediate assertions

You can keep using the simpler property form we’ve been
using

Last Exercise!

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

278 / 285

Let’s formally verify a synchronous FIFO

ent i t y sfifo i s
gener ic (BW : natural := 8 ;

LGFLEN : natural := 4) ;

port (i_clk , i_reset : i n std_logic ;
´́ The incoming (w r i t e) i n t e r f a c e
i_wr : i n std_logic ;
i_data : i n std_logic_vector (BW´1 downto 0) ;
o_full : out std_logic := ’ 0 ’ ;
´́ The outgo ing (read) i n t e r f a c e
i_rd : i n std_logic ;
o_data : out std_logic_vector (BW´1 downto 0) ;
o_empty : out std_logic := ’ 1 ’ ;
o_err : out std_logic := ’ 0 ’) ;

end ent i t y sfifo ;

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

279 / 285

Let’s formally verify a synchronous FIFO

arch i tec tu re behavior of sfifo i s
constant FLEN : natural := 2 ∗∗ LGFLEN ;

type data_type i s
std_logic_vetor (BW´1 downto 0) ;

type mem_type i s
ar ray (FLEN´1 downto 0) of data_type ;

type ptr_type i s
unsigned (LGFLEN downto 0) ;

s i gna l mem : mem_type ;

s i gna l r_first : ptr_type

:= to_unsigned (0 , LGFLEN+1);

See the problem?

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

279 / 285

Let’s formally verify a synchronous FIFO

arch i tec tu re behavior of sfifo i s
constant FLEN : natural := 2 ∗∗ LGFLEN ;

type data_type i s
std_logic_vetor (BW´1 downto 0) ;

type mem_type i s
ar ray (FLEN´1 downto 0) of data_type ;

type ptr_type i s
unsigned (LGFLEN downto 0) ;

s i gna l mem : mem_type ;

s i gna l r_first : ptr_type

:= to_unsigned (0 , LGFLEN+1);

See the problem? You can’t pass memories through ports!

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

280 / 285

How will you pass the memory to the formal tool?

˝ You might pass an arbitrary address and value instead

s i gna l test_address : ptr_type ;
a t t r i bu te anyconst of test_address

: s i gna l i s ’ 1 ’ ;
s i gna l test_value : data_type ;

´́ ´́
test_value <= mem (to_integer (unsigned (´́ ´́

test_address (LGFLEN´1 downto 0)))) ;

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

281 / 285

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

281 / 285

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

281 / 285

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

281 / 285

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

281 / 285

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
˝ The two outputs, o_empty and o_full, should properly reflect

the size of the FIFO

– o_empty means the FIFO is currently empty
– o_full means the FIFO has 2N elements within it

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

281 / 285

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
˝ The two outputs, o_empty and o_full, should properly reflect

the size of the FIFO

– o_empty means the FIFO is currently empty
– o_full means the FIFO has 2N elements within it

˝ Challenge: Use sequences to prove that

– Given any two values written successfully
– Verify that those two values can (some time later) be read

successfully, and in the right order
(Unless a reset takes place in the meantime)

Hint

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

282 / 285

When using sequences,. . .

˝ It can be very difficult to figure out what part of the
sequence failed.
The assertion that fails will reference the entire failing
sequence.

Suggestions:

˝ Sequences must be triggered
Be aware of what triggers a sequence

˝ Use combinational logic to define wires that will then
represent steps in the sequence

˝ Build the sequences out of these wires

Hint continued

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Sequences

Ź Exercise

Parting Thoughts

283 / 285

Here’s an example:

wire f_a , f_b , f_c ;
//
ass ign f_a = // your l o g i c
ass ign f_b = // your l o g i c
ass ign f_c = // your l o g i c
//
sequence ARBITRARY_EXAMPLE_SEQUENCE

f_a [∗ 0 : 4] ##1 f_b ##1 f_c [∗ 1 2 : 1 6] ;
endsequence

If you use this approach

˝ Interpreting the wave file will be much easier
˝ The f_a, etc., lines will be in the trace

Parting Thoughts

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź
Parting
Thoughts

Questions?

284 / 285

Questions?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Parting Thoughts

Ź Questions?

285 / 285

	
	Welcome
	Motivation
	Introduction

	Formal Verification Basics: assert and assume
	General Rule
	Carelessness
	Bounded Model Checking
	Ex: Counter

	Clocked and $past
	Basics
	$past Rule
	Past Assertions
	Examples
	Ex: Busy Counter

	k Induction
	Lesson Overview
	BMC vs Induction
	General Rule
	Checkers
	The Trap
	Results
	Examples

	Bus Properties
	Ex: WB Bus

	Free Variables
	Lesson Overview
	any*
	VHDL any* attributes
	Memory
	So what?
	Rule of Free Variables
	Discussion

	Abstraction
	Lesson Overview
	Abstraction Formally
	Formal Proof
	In Pictures
	Examples
	Exercise

	Invariants
	Lesson Removed

	Multiple-Clocks
	Basics
	SymbiYosys config change
	(* gclk *)
	$rose
	$stable
	Examples
	Exercises

	Cover
	Lesson Overview
	BMC vs Cover
	Cover in Verilog
	State Space
	SymbiYosys
	Counter

	Sequences
	Lesson Overview
	Clocking
	Sequences
	Last Exercise!

	Parting Thoughts
	Questions?

