
Gisselquist
Technology, LLC

An Introduction to

Formal Methods

Daniel E. Gisselquist, Ph.D.

Lessons

Ź Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

2 / 462

Day one

1. Motivation
2. Basic Operators
3. Clocked Operators
4. Induction
5. Bus Properties

Day two

6. Free Variables
7. Abstraction
8. Invariants
9. Multiple-Clocks
10. Cover
11. Sequences
12. Final Thoughts

Course Structure

Ź Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

3 / 462

˝ We’ll be primarily using the immediate assertion subset of the
full SystemVerilog assertion language

– It’s easier to understand
– Concurrent assertions are built on top of immediate

assertions under the hood

˝ Each lesson will be followed by an exercise
There are 12 exercises

˝ My goal is to have 50% lecture, 50% exercises
˝ Leading up to building a bus arbiter

and testing an synchronous FIFO

Motivation

Welcome

Ź Motivation

Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

4 / 462

Lesson Overview

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

5 / 462

1. Why are you here?
2. What can I provide?
3. What have I learned from formal methods?

Our Objectives

˝ Get to know a little bit about each other
˝ Motivate further discussion

Your expectations

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

6 / 462

What do you want to learn and get out of this course?

From an ARM dev.

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

7 / 462

˝ “I think the main difference between FPGA and ASIC
development is the level of verification you have to go
through. Shipping a CPU or GPU to Samsung or whoever,
and then telling them once they’ve taped out that you have a
Cat1 bug that requires a respin is going to set them back
$1M per mask.

˝ “. . . But our main verification is still done with constrained
random test benches written in SV.

˝ “Overall, you are looking at 50 man years per project
minimum for an average project size.”

Would not exist

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

8 / 462

“If we would not do formal verification, we would
no longer exist.”

– Shahar Ariel, now the former Head of VLSI design at Mellanox

Pentium FDIV

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

9 / 462

One little mistake . . .

. . . $475M later.

Personal Experience

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

10 / 462

I have proven such things as,

˝ Formal bus properties (Wishbone, Avalon, AXI, etc.)
˝ Bus bridges (WB-AXI, Avalon-WB)
˝ AXI DMA’s, firewalls, crossbars
˝ Prefetches, cache controllers, memory controllers, MMU
˝ SPI slaves and masters
˝ UART, both TX and RX
˝ FIFO’s, signal processing flows, FFT
˝ Display (VGA) Controller
˝ Flash controllers
˝ Formal proof of the ZipCPU

Some Examples

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

11 / 462

I’ve found bugs in things I thought were working.

1. FIFO
2. Pre-fetch and Instruction cache
3. SDRAM
4. A peripheral timer

Just how hard can a timer be to get right? It’s just a
counter!

Ex: FIFO

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

12 / 462

˝ It worked in my test bench
˝ Failed when reading and writing on the same clock while

empty

– Write first then read worked
– R+W on full FIFO is okay
– R+W on an empty FIFO

Ex: FIFO

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

12 / 462

˝ It worked in my test bench
˝ Failed when reading and writing on the same clock while

empty

– Write first then read worked
– R+W on full FIFO is okay
– R+W on an empty FIFO . . . not so much

˝ My test bench didn’t check that, formal did

Ex: Prefetch

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

13 / 462

˝ It worked in my test bench
˝ Ugliest bug I ever came across was in the prefetch cache

It passed test-bench muster, but failed in the hardware with a
strange set of symptoms

˝ When I learned formal, it was easy to prove that this would
never happen again.

˝ Low logic has always been one of my goals.
Always asking, “will it work if I get rid of this condition?”
Formal helps to answer that question for me.

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

14 / 462

˝ It worked in my test bench
˝ It passed my hardware testing

– Test S/W: Week+, no bugs

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

14 / 462

˝ It worked in my test bench
˝ It passed my hardware testing

– Test S/W: Week+, no bugs
– Formal methods found the bug
– Full proof took less than ă 30 min

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

15 / 462

˝ It worked in my test bench
˝ It passed my hardware testing
˝ Background

Ex: SDRAM

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

15 / 462

˝ It worked in my test bench
˝ It passed my hardware testing
˝ Background

– SDRAM’s are organized into separate banks, each having
rows and columns

– A row must be “activated” before it can be used.
– The controller must keep track of which row is activated.
– If a request comes in for a row that isn’t activated, the

active row must be deactivated, and the proper row must
be activated.

˝ A subtle bug in my SDRAM controller compared the active
row address against the immediately previous (1-clock ago)
required row address, not the currently requested address.
This bug had lived in my design for years. Formal methods
caught it.

Problem with Test Benches

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

16 / 462

˝ Only examines a known good branch
˝ Cannot check for every out of bounds conditions

Problem with Test Benches

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

17 / 462

˝ Demonstrate design works
˝ Through a normal working path

– or a limited number of extraneous paths

˝ Never rigorous enough to check everything
˝ Not uniform in rigour

For the FIFO,

˝ I only read when I knew it wasn’t empty

For the Prefetch,

˝ I never tested jumping to the last location in a cache line

For the SDRAM,

˝ The error was so obscure, it would be hard to trigger

Before Formal

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

18 / 462

This was my method before starting to work with formal.

˝ After . . .

– Proving my design with test
benches

– Directed simulation

˝ I was still chasing bugs in hard-
ware

I still use this approach for DSP al-
gorithms.

Design Approach

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

19 / 462

˝ After finding the bug in my
FIFO . . . I was hooked.

˝ Rebuilding everything
. . . now using formal

˝ Formal found more bugs
. . . in example after example

˝ I’m hooked!

When to use it?

Welcome

Motivation

Ź Intro

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

20 / 462

˝ Bus component
I would not build a bus compo-
nent without formal any more

˝ Multiplies
Formal struggles with multipli-
cation

Formal Verification
Basics: assert and assume

Welcome

Motivation

Ź Basics

Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

21 / 462

Lesson Overview

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

22 / 462

Let’s start at the beginning, and look at the very basics of formal
verification.
Our Objective:

˝ To learn the basic two operators used in formal verification,

– assert()

– assume()

˝ To understand how these affect a design from a state space
perspective

˝ We’ll also look at several examples

Basic Premise

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

23 / 462

Formal methods are built around looking for redundancies.

˝ Basic difference between mediocre and excellent:
Double checking your work

˝ Two separate and distinct fashions

– First method calculates the answer
– Second method proved it was right

˝ Example: Division

– 89, 321{499 “ 179

– Does it? Let’s check: 179 ˚ 499 “ 89, 321 — Yes

˝ Formal methods are similar

– Your design is the first method
– Formal properties describe the second

Basic Operators

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

24 / 462

Let’s start with the two basic operators

1. assume()

An assume(X) statement will limit the state space that the
formal verification engine examines.

2. assert()

An assert(X) statement indicates that X must be true, or the
design will fail to prove.

Two basic forms

Welcome

Motivation

Basics

Ź Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

25 / 462

always @ (∗)
as se r t (X) ;

// Use when your p r o p e r t y has c l o c k dependenc i e s ,
// such as r e f e r e n c i n g an i t ems va l u e i n the pa s t
always @ (posedge clk)

as se r t (X) ;

As an example,

always @ (∗)
as se r t (counter < 20) ;

General Rule

Welcome

Motivation

Basics

Basics

Ź General Rule

Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

26 / 462

Assert

Welcome

Motivation

Basics

Basics

General Rule

Ź Assert

Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

27 / 462

˝ Assertions define the illegal state space.
˝ Additional assertions will increase the size of the illegal state

space.

Assume

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

28 / 462

˝ Assumptions limit the universe of all possibilities
˝ Additional assumptions will decrease the size of the total

state space
˝ Caution: One careless assumption can void the proof

The Careless Assumption

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

29 / 462

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)

counter <= counter + 1 ’b1 ;

always @ (∗)
begin

as se r t (counter <= 100) ;
assume (counter <= 90) ;

end

Question: Will counter ever reach 120?

restrict vs assume

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

30 / 462

restrict () is very similar to assume()

Operator Formal Verification Traditional Simulation

restrict () Restricts search Ignored
assume() space Halts simulation
assert() Illegal state with an error

restrict vs assume

Welcome

Motivation

Basics

Basics

General Rule

Assert

Ź Assume

BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

30 / 462

restrict () is very similar to assume()

Operator Formal Verification Traditional Simulation

restrict () Restricts search Ignored
assume() space Halts simulation
assert() Illegal state with an error

˝ restrict (): Like assume(X), it also limits the state space
˝ But in a traditional simulation . . .

– restrict () is ignored
– assume() is turned into an assert()

Bounded Model Checking

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

31 / 462

For bounded model checking,

1. Start at the initial state
2. Examine all possible states for N clocks
3. Try to find a way to make an assert (); fail
4. If it’s not possible in N clocks, then pass

No Solution

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

32 / 462

Problem: initial assume(!initial_state);

Model fails, no line number given.

No Solution

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

33 / 462

Problem: assume(!reachable_state);

Model fails, no line number given.

Further thoughts

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

34 / 462

Unlike the rest of your digital design, formal properties . . .

˝ don’t need to meet timing
˝ don’t need to meet a minimum logic requirement

We’ll discuss this more as we go along.

Example Bus Slave

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

35 / 462

Here’s an example of a bus slave

˝ Inputs are assumed
˝ Outputs are asserted

Example Bus Master

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

36 / 462

Question: How would a bus master be different?

Example Bus Master

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

36 / 462

Question: How would a bus master be different?

The slave’s outputs are the master’s inputs

˝ assume() the inputs from the slave
˝ assert() the outputs from the master

Internal Bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

37 / 462

Question: What if both slave and master signals were part of the
same design?

Internal Bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

37 / 462

Question: What if both slave and master signals were part of the
same design?

˝ All of the wires are now internal
˝ They should therefore be assert()ed

Serial Port Transmitter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

38 / 462

˝ Whenever the serial port is idle, the output line should be
high

i f (state == IDLE)
as se r t (o_uart_tx) ;

˝ Whenever the serial port is not idle, busy should be high

i f (state != IDLE)
as se r t (o_busy) ;

e l s e
as se r t (! o_busy) ;

˝ The design can only ever be in a valid state

as se r t ((state <= TXUL_STOP)
| | (state == TXUL_IDLE)) ;

Bus Arbiter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

39 / 462

˝ Arbiter cannot grant both A and B access

always @ (∗)
as se r t ((! grant_A) | | (! grant_B)) ;

˝ While one has access, the other must be stalled

always @ (∗)
i f (grant_A)

as se r t (stall_B) ;

always @ (∗)
i f (grant_B)

as se r t (stall_A) ;

Bus Arbiter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

40 / 462

˝ While one is stalled, its outstanding requests must be zero

always @ (∗)
i f (grant_A)
begin

as se r t (f_nreqs_B == 0) ;
as se r t (f_nacks_B == 0) ;
as se r t (f_outstanding_B == 0) ;

end

I use the prefix f_ to indicate a variable that is

˝ Not part of the design
˝ But only used for Formal Verification

Avalon bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

41 / 462

˝ Avalon bus: will never issue a read and write request at the
same time

always @ (∗)
assume ((! i_av_read) | | (! i_av_write)) ;

˝ The bus is initially idle

i n i t i a l assume (! i_av_read) ;
i n i t i a l assume (! i_av_write) ;
i n i t i a l assume (! i_av_lock) ;
i n i t i a l a s se r t (! o_av_readdatavalid) ;
i n i t i a l a s se r t (! o_av_writeresponsevalid) ;

Avalon bus

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

42 / 462

˝ Cannot respond to both read and write in the same clock

always @ (∗)
assume ((! i_av_readdatavalid)

| | (! i_av_writeresponsevalid)) ;

Remember ! (A&&B) is equivalent to (!A)||(! B)

˝ Cannot respond if no request is outstanding

always @ (∗)
begin

i f (f_wr_outstanding == 0)
as se r t (! o_av_writeresponsevalid) ;

i f (f_rd_outstanding == 0)
as se r t (! o_av_readdatavalid) ;

end

Wishbone

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

43 / 462

˝ o_STB can only be high if o_CYC is also high

always @ (∗)
i f (o_STB)

as se r t (o_CYC) ;

˝ Count the number of outstanding requests:

ass ign f_outstanding = (i_reset) ? 0
: f_nreqs ´ f_nacks ;

˝ Acks can only respond to valid requests

i f (f_outstanding == 0)
assume (! i_wb_ack) ;

Wishbone

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

44 / 462

˝ Well, what if a request is being made now?

i f ((f_outstanding == 0)
&&((!o_wb_stb) | | (i_wb_stall)))

assume (! i_wb_ack) ;

˝ If not within a bus request, the ACK and ERR lines must be
low

i f (! o_CYC)
begin

assume (! i_ACK) ;
assume (! i_ERR) ;

end

˝ Following any reset, the bus will be idle
˝ Requests remain unchanged until accepted

Cache

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

45 / 462

Want a guarantee that the cache response is consistent?

˝ A valid cache entry must ...

always @ (posedge i_clk)
i f (o_valid)
begin

// Be marked v a l i d i n the cache
as se r t (cache_valid [f_addr [CW´1:LW]]) ;
// Have the same cache tag as add r e s s
as se r t (f_addr [AW´1:LW] ==

cache_tag [f_addr [CW´1:LW]]) ;
// Match the v a l u e i n the cache
as se r t (o_data ==

cache_data [f_addr [CW´1 : 0]) ;
// Must be i n r e s pon s e to a v a l i d
// r e q u e s t
as se r t (waiting_requests != 0) ;

end

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

46 / 462

Consider a multiply

˝ Just because an algorithm doesn’t meet timing

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

46 / 462

Consider a multiply

˝ Just because an algorithm doesn’t meet timing, or
˝ Just because it take up logic your FPGA doesn’t have

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

46 / 462

Consider a multiply

˝ Just because an algorithm doesn’t meet timing, or
˝ Just because it take up logic your FPGA doesn’t have,

doesn’t mean you can’t use it now

always @ (posedge i_clk)
begin

f_answer = 0 ;
f o r (k=0; k<NA ; k=k+1)
begin

i f (i_a [k])
f_answer = f_answer + (i_b<<k) ;

end

as se r t (o_result == f_answer) ;
end

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

47 / 462

Let’s talk about that multiply some more . . .

˝ The one thing formal solver’s don’t handle well is multiplies

Multiply

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

47 / 462

Let’s talk about that multiply some more . . .

˝ The one thing formal solver’s don’t handle well is multiplies

Abstraction offers alternatives

Memory Management Unit

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

48 / 462

˝ For a page result to be valid, it must match the TLB

always @ (∗)
i f (last_page_valid)
begin

as se r t (tlb_valid [f_last_page]) ;
as se r t (last_ppage ==

tlb_pdata [f_last_page]) ;
as se r t (last_vpage ==

tlb_vdata [f_last_page]) ;
as se r t (last_ro ==

tlb_flags [f_last_page] [ROFLAG]) ;
as se r t (last_exe ==

tlb_flags [f_last_page] [EXEFLG]) ;
as se r t (r_context_word [LGCTXT´1:1]

== tlb_cdata [f_last_page]) ;
end

SDRAM

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

Ź BMC

Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

49 / 462

˝ Writing requires the right row of the right bank to be
activated

always @ (posedge i_clk)
i f ((f_past_valid)&&(!maintenance_mode))
case (f_cmd)

// . . .
F_WRITE : begin

// Response to a w r i t e r e q u e s t
as se r t (f_we) ;
// Bank i n qu e s t i o n must be a c t i v e
as se r t (bank_active [o_ram_bs] == 3 ’ b111) ;
// Ac t i v e row must be f o r t h i s a dd r e s s
as se r t (bank_row [o_ram_bs]

== f_addr [2 2 : 1 0]) ;
// Must be s e l e c t i n g the r i g h t bank
as se r t (o_ram_bs == f_addr [9 : 8]) ;
end

// . . .

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

50 / 462

Let’s work through a counter as an example.

exercise-01/ Contains two files
counter.v This will be the HDL source for

our demo.
counter.sby This is the SymbiYosys script

for the demo

Our Objectives:

˝ Walk through the steps in the tool-flow
˝ Hands on experience with SymbiYosys
˝ Ensure everyone has a working version of SymbiYosys
˝ Find and fix a design bug

Ex: Counter

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

51 / 462

parameter [1 5 : 0] MAX_AMOUNT = 22 ;
reg [1 5 : 0] counter ;

always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= MAX_AMOUNT´1’b1 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ’b1 ;

always @ (∗)
o_busy = (counter != 0) ;

‘ i f d e f FORMAL

always @ (∗)
as se r t (counter < MAX_AMOUNT) ;

‘ e nd i f

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc

[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc Bounded model checking mode

[engines]
smtbmc

[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc Run, using yosys-smtbmc

[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc

[s c r i p t] Yosys commands
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc

[s c r i p t]
read ´formal counter . v Read file
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc

[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter Prepare the file for formal

[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

52 / 462

In the file, exercise-01/counter.sby, you’ll find:

[opt ions]
mode bmc

[engines]
smtbmc

[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

[f i l e s] List of files to be used
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc Other modes: prove, cover, live
depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc

depth 20 # of Steps to examine
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices Yices theorem prover (default)
smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r Other potential solvers
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all We’ll discusss this later
[f i l e s]
counter . v

Example: SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

53 / 462

Other usefull yosys commands

[opt ions]
mode bmc

depth 20
[engines]
smtbmc yices

smtbmc b o o l e c t o r
smtbmc z3
[s c r i p t]
read ´formal counter . v
. . . o t h e r f i l e s would go he r e
prep ´top counter

opt_merge ´share_all
[f i l e s]
counter . v Full or relative pathnames go here

Running SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

54 / 462

Run: % sby -f counter.sby

Running SymbiYosys

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

54 / 462

Run: % sby -f counter.sby

BMC Failed

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

55 / 462

Run: % sby -f counter.sby

Where Next

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

56 / 462

Look at source line 63, and fire up gtkwave

GTKWave trace.vcd

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

57 / 462

Run: % gtkwave counter/engine 0/trace.vcd

Examine the source

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

58 / 462

Run: % gvim demo-rtl/counter.v

What did we do wrong?

Examine the source

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ź Ex: Counter

Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

58 / 462

Run: % gvim demo-rtl/counter.v

What did we do wrong?

Did you notice the missing initial statement?

Illegal Initial State

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Ź Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

59 / 462

˝ Problem: No initial statement
˝ Solver finds an invalid initial state
˝ Model fails

Exercise

Welcome

Motivation

Basics

Basics

General Rule

Assert

Assume

BMC

Ex: Counter

Ź Sol’n

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

60 / 462

Try adding in the initial statement, will it work?

Clocked and $past

Welcome

Motivation

Basics

Ź
Clocked and
$past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

61 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

Ź Past

$past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

62 / 462

Our Objective:

˝ To learn how to make assertions crossing time intervals

– $past()

˝ Before the beginning of time

– Assumptions always hold
– Assertions rarely hold

˝ How to get around this with f_past_valid

The $past operator

Welcome

Motivation

Basics

Clocked and $past

Ź Past

$past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

63 / 462

˝ $past(X) Returns the value of X one clock ago.
˝ $past(X,N) Returns the value of X N clocks ago.
˝ Depends upon a clock

– This is illegal

always @ (∗)
i f (X)

as se r t (Y == $past (Y)) ;

No clock is associated with the $past operator.
– But you can do this

always @ (posedge clk)
i f (X)

as se r t (Y == $past (Y)) ;

$past Rule

Welcome

Motivation

Basics

Clocked and $past

Past

Ź $past Rule

Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

64 / 462

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

65 / 462

Let’s modify our counter, by creating some additional properties:

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge clk)
as se r t ($past (counter == 0)) ;

˝ i_start_signal is now never true, so the counter should
always be zero.

˝ assert(counter == 0);

This should always be true, since counter starts at zero, and
is never changed from zero.

˝ Will assert($past(counter == 0)); succeed?

You can find this file in exercise-02/pastassert.v

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

66 / 462

˝ This fails

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge clk)
as se r t ($past (counter == 0)) ;

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

66 / 462

˝ This fails

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge clk)
as se r t ($past (counter == 0)) ;

˝ Before time, counter is unconstrained.
˝ The solver can make it take on any value it wants in order to

make things fail
˝ This will not show in the VCD file

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

67 / 462

˝ This succeeds

always @ (∗)
assume (! i_start_signal) ;

always @ (∗)
as se r t (counter == 0) ;

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

68 / 462

Let’s try again:

always @ (posedge clk)
i f ($past (i_start_signal))

as se r t (counter == MAX_AMOUNT´1’b1) ;

This should work, right?

Past Assertions

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Ź Past Assertions

Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

68 / 462

Let’s try again:

always @ (posedge clk)
i f ($past (i_start_signal))

as se r t (counter == MAX_AMOUNT´1’b1) ;

This should work, right? No, it fails.

˝ i_start_signal is unconstrained before time
˝ counter is initially constrained to zero
˝ If i_start_signal is one before time,

counter will still be zero when time begins

f past valid

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

69 / 462

We can fix this with a register I call, f_past_valid:

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal)))

as se r t (counter == MAX_AMOUNT´1’b1) ;

Will this work?

f past valid

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

69 / 462

We can fix this with a register I call, f_past_valid:

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal)))

as se r t (counter == MAX_AMOUNT´1’b1) ;

Will this work? Almost, but not yet.

Fixing the counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

70 / 462

˝ What about the case where i_start_signal is raised while
the counter isn’t zero?

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal))

&&($past (counter == 0)))
as se r t (counter == MAX_AMOUNT´1’b1) ;

˝ Will this work?

Fixing the counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Ź Past Valid

Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

70 / 462

˝ What about the case where i_start_signal is raised while
the counter isn’t zero?

reg f_past_valid ;

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_start_signal))

&&($past (counter == 0)))
as se r t (counter == MAX_AMOUNT´1’b1) ;

˝ Will this work? Yes, now it will work
˝ You’ll find lots of references to f_past_valid in my own

designs

Examples

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

71 / 462

Let’s look at some practical examples

Reset example, #1

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

72 / 462

The rule: Every design should start in the reset state.

i n i t i a l assume (i_RESET) ;

always @ (∗)
i f (! f_past_valid)

assume (i_RESET) ;

What would be the difference between these two properties?

Reset example, #2

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

73 / 462

The rule: On the clock following a reset, there should be no
outstanding bus requests.

always @ (posedge clk)
i f ((f_past_valid)&&($past (i_RESET)))

as se r t (! o_CYC) ;

Reset example, #2

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

74 / 462

Two times registers must have their reset value

˝ Initially
˝ Following a reset

always @ (posedge clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

as se r t (! o_CYC) ;
as se r t (! o_STB) ;
// e t c .

end

Bus example

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Ź Examples

Ex: Busy Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

75 / 462

The rule: while a request is being made, the request cannot
change until it is accepted.

always @ (posedge clk)
i f ((f_past_valid)

&&($past (o_STB))&&($past (i_STALL)))
begin

as se r t (o_STB) ;
as se r t (o_REQ == $past (o_REQ)) ;

end

Ex: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

76 / 462

Many of my projects include some type of “busy counter”

˝ Serial port logic must wait for a baud clock
Transmit characters must wait for the port to be idle

˝ I2C logic needs to slow the clock down
˝ SPI logic may also need to slow the clock down

Objectives:

˝ Gain some confidence using formal methods to prove that
alternative designs are equivalent

Exercise: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

77 / 462

Here’s the basic design. It should look familiar.

parameter [1 5 : 0] MAX_AMOUNT = 22 ;

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f (i_reset)

counter <= 0 ;
e l s e i f ((i_start_signal)&&(counter == 0))

counter <= MAX_AMOUNT´1’b1 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ;

always @ (∗)
o_busy = (counter != 0) ;

Exercise: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

78 / 462

You can find the design in exercise-03/busyctr.v.
Exercise: Create the following properties:

1. i_start_signal may be raised at any time
No property needed here

2. Once raised, assume i_start_signal will remain high until
it is high and the counter is no longer busy.

3. o_busy will always be true while the counter is non-zero
Make sure you check o_busy both when counter == 0 and
counter != 0

This requires an assertion
4. If the counter is non-zero, it should always be counting down

Beware of the reset!
This requires another assertion

Exercise: Busy Counter

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

79 / 462

Let’s draw this requirement out

2. Once raised, assume i_start_signal will remain high until
it is high and the counter is no longer busy.

i clk

i start signal

o busy

counter 5 4 3 2 1 0 21

Busy Counter, Part two

Welcome

Motivation

Basics

Clocked and $past

Past

$past Rule

Past Assertions

Past Valid

Examples

Ź
Ex: Busy
Counter

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

80 / 462

Exercise:

1. Make o_busy a clocked register

always @ (posedge i_clk)
o_busy <= /∗ your l o g i c goes he r e ∗/ ;

2. Prove that o_busy is true if and only if the counter is
non-zero

˝ You can use this approach to adjust your design to meet
timing

– Shuffle logic from one clock to another, then
– Prove the new design remains valid

k Induction

Welcome

Motivation

Basics

Clocked and $past

Ź k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

81 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

82 / 462

If you want to formally verify your design, BMC is insufficient

˝ Bounded Model Checking (BMC) will only prove that your
design is correct for the first N clocks.

˝ It cannot prove that the design won’t fail on the next clock,
clock N ` 1

˝ This is the purpose of the induction step: proving correctness
for all time

Our Goals

˝ Be able to explain what induction is
˝ Be able to explain why induction is valuable
˝ Know how to run induction
˝ What are the unique problems associated with induction

From Pre-Calc

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

83 / 462

Proof by induction has two steps:

1. Base case: Prove for N “ 0 (or one)
2. Inductive step: Assume true for N , prove true for N ` 1.

Example: Prove
N´1
ÿ

n“0

xn “
1´ xN

1´ x

˝ For N “ 1, the sum is x0 or one

N´1
ÿ

n“0

xn “ x0 “
1´ x

1´ x

So this is true (for x ‰ 1).
˝ For the inductive step, we’ll

– Assume true for N , then prove for N ` 1

Proof, continued

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

84 / 462

Prove
N´1
ÿ

n“0

xn “
1´ xN

1´ x
for all N

˝ Assume true for N , prove for N ` 1
N
ÿ

n“0

xn “ xN `
N´1
ÿ

n“0

xn “ xN `
1´ xN

1´ x

˝ Prove for N ` 1

N
ÿ

n“0

xn “
1´ x

1´ x
xN `

1´ xN

1´ x

“
xN ´ xN`1 ` 1´ xN

1´ x
“

1´ xN`1

1´ x

This proves the inductive case.
˝ Hence this is true for all N (where N ą 0 and x ‰ 1)

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

85 / 462

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

85 / 462

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

This is what we did with BMC

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

85 / 462

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

This is our next step

k Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

85 / 462

Suppose @n : P rns is what we wish to prove

˝ Traditional induction

– Base case: show P r0s
– Inductive case: show P rns Ñ P rn` 1s

˝ k induction

– Base case: show
N´1
ľ

k“0

P rks

– k-induction step:

˜

n
ľ

k“n´N`1

P rks

¸

Ñ P rn` 1s

Why use k induction?

Induction in Verification

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Lesson Overview

vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

86 / 462

Formal verification uses k induction

˝ Base case:
Assume the first N steps do not violate any assumptions, . . .
Prove that the first N steps do not violate any assertions.
The is the BMC pass we’ve already done.

˝ Inductive Step:
Assume N steps exist that neither violate any assumptions
nor any assertions, and
Assume the N ` 1 step violates no assumptions, . . .
Prove that the N ` 1 step does not violate any assertions.

BMC vs Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

Ź vs BMC

General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

87 / 462

BMC and induction are very different.

˝ BMC, the base case

˝ Induction step

˝ The number of BMC time-steps steps must be more than the
number of inductive time-steps

˝ Register values at the beginning of the inductive step can be
anything allowed by your assertions and assumptions

˝ This is where the work takes place.

General Rule

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

88 / 462

The general rule hasn’t changed:

˝ assume inputs,
˝ assert internal states and any outputs.

If you assume too much, your design will pass formal verification
and still not work.

Checkers

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

89 / 462

Some assertions:

˝ Games are played on black squares
˝ Players will never have more than 12 pieces
˝ Only legal moves are possible
˝ Game is over when one side can no longer move

Where might the induction engine start?

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

90 / 462

Black’s going to move and win

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

90 / 462

White’s going to move and win

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

90 / 462

Black’s going to . . . , huh?

Checkers in the Library

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

90 / 462

Would this pass our criteria?

Checkers and Induction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

Ź General Rule

The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

91 / 462

What can we learn from Checkers?

˝ Inductive step starts in the middle of the game
Only the assumptions and asserts are used to validate the
game

˝ All of the FF’s (variables) start in arbitrary states
These states are only constrained by your assumptions and
assertions.

˝ Your formal constraints are required to limit the allowable
states

The Trap

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

Ź The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

92 / 462

˝ If your formal properties are not strict enough,
Induction may start in an unreachable state

˝ This is a common problem!

The Solution

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

Ź The Trap

Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

93 / 462

To make induction work, you must . . .

˝ assume unrealistic inputs will never happen
˝ assert any remaining unreachable states are illegal
˝ Induction often requires more properties than BMC alone

Results

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Ź Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

94 / 462

Unlike BMC, the results of induction might be inconclusive

k
In
d
u
ct
io
n Basecase (BMC)

FAIL PASS

FAIL Design UNKNOWN
PASS Fails SUCCESS!

The k induction pass will fail if your design doesn’t have enough
assertions.

Results

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Ź Results

Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

95 / 462

There’s also a difference in when BMC and induction finish

˝ BMC will finish early if the design FAILs
˝ Induction will finish early if the design PASSes
˝ In all other cases, they will take a full depth steps

You can use this fact to trim the depth of your proof

˝ Once induction succeeds, trim your proof depth to that
length

˝ This will immediately make your proof run that much faster

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

96 / 462

˝ Let’s look at some examples

Another Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

97 / 462

This design would pass many steps of BMC

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)

counter <= counter + 1 ’b1 ;

always @ (∗)
as se r t (counter < 16 ’ d65000) ;

It will not pass induction.
Can you explain why not?

Another Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

98 / 462

Here’s another counter that will pass BMC, but not induction

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)
i f (counter == 16 ’ d22)

counter <= 0 ;
e l s e

counter <= counter + 1 ’b1 ;

always @ (∗)
as se r t (counter != 16 ’ d500) ;

Can you explain why not?

Another Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

99 / 462

With one simple change, this design will now pass induction

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)
i f (counter == 16 ’ d22)

counter <= 0 ;
e l s e

counter <= counter + 1 ’b1 ;

always @ (∗)
as se r t (counter <= 16 ’ d22) ;

See the difference?

Shift Register Comparison

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

100 / 462

These shift registers will be equal during BMC, but require at
least sixteen steps to pass induction

reg [1 5 : 0] sa , sb ;
i n i t i a l sa = 0 ;
i n i t i a l sb = 0 ;
always @ (posedge clk)

sa <= { sa [1 4 : 0] , i_bit } ;

always @ (posedge clk)

sb <= { sb [1 4 : 0] , i_bit } ;

always @ (∗)
as se r t (sa [1 5] == sb [1 5]) ;

Can you explain why it would take so long?

Shift Register Comparison

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

101 / 462

This design is almost identical to the last one, yet fails induction.
The key difference is the if (i_ce).

reg [1 5 : 0] sa , sb ;
i n i t i a l sa = 0 ;
i n i t i a l sb = 0 ;
always @ (posedge clk)
i f (i_ce)

sa <= { sa [1 4 : 0] , i_bit } ;

always @ (posedge clk)
i f (i_ce)

sb <= { sb [1 4 : 0] , i_bit } ;

always @ (∗)
as se r t (sa [1 5] == sb [1 5]) ;

Can you explain why this wouldn’t pass?

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc

˝ abc pdr

˝ aiger suprove

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc Inconclusive Proof (Induction fails)
˝ abc pdr Pass
˝ aiger suprove Pass

Fixing Shift Reg

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

102 / 462

Several approaches to fixing this:

1. assume(i_ce);

Doesn’t really test the design
2. opt_merge ´share_all, yosys option

Works for some designs
3. assert(sa == sb);

Best, but only works when sa and sb are visible
4. Insist on no more than M clocks between i_ce’s
5. Use a different prover, under the [engines] option

˝ smtbmc Inconclusive Proof (Induction fails)
˝ abc pdr Pass
˝ aiger suprove Pass

Most of these options work for some designs only

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

103 / 462

Here’s how we’ll change our sby file:

[opt ions]
mode prove

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
. . . o t h e r f i l e s would go he r e
prep ´top module

opt_merge ´share_all

[f i l e s]
. . / path´to/module . v

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

103 / 462

Here’s how we’ll change our sby file:

[opt ions]
mode prove Use BMC and k-induction

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
. . . o t h e r f i l e s would go he r e
prep ´top module

opt_merge ´share_all

[f i l e s]
. . / path´to/module . v

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

103 / 462

Here’s how we’ll change our sby file:

[opt ions]
mode prove

[engines]
smtbmc Other potential engines would go here

[s c r i p t]
read ´formal module . v
. . . o t h e r f i l e s would go he r e
prep ´top module

opt_merge ´share_all

[f i l e s]
. . / path´to/module . v

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

103 / 462

Here’s how we’ll change our sby file:

[opt ions]
mode prove

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
. . . o t h e r f i l e s would go he r e
prep ´top module

opt_merge ´share_all Here’s where opt merge would go

[f i l e s]
. . / path´to/module . v

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

104 / 462

Exercise #4: dblpipe.v

module dblpipe (i_clk ,
i_ce , i_data , o_data) ;

// . . .

wire a_data , b_data ;

lfsr_fib one (i_clk , 1 ’b0 , i_ce ,
i_data , a_data) ;

lfsr_fib two (i_clk , 1 ’b0 , i_ce ,
i_data , b_data) ;

i n i t i a l o_data = 1 ’b0 ;
always @ (posedge i_clk)

o_data <= a_data ˆ b_data ;
endmodule

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

105 / 462

Exercise #4: dblpipe.v

˝ lfsr_fib just implements a Fibonacci linear feedback shift
register,

sreg [(LN´2) :0] <= sreg [(LN´1) : 1] ;
sreg [(LN´1)] <= (ˆ(sreg & TAPS)) ˆ i_in ;

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

106 / 462

Exercise #4: dblpipe.v, lfsr fib.v

reg [(LN´1) :0] sreg ;

i n i t i a l sreg = INITIAL_FILL ;
always @ (posedge i_clk)
i f (i_reset)

sreg <= INITIAL_FILL ;
e l s e i f (i_ce)
begin // Bas i c s h i f t r e g i s t e r update o p e r a t i o n

sreg [(LN´2) :0] <= sreg [(LN´1) : 1] ;
sreg [(LN´1)] <= (ˆ(sreg & TAPS)) ˆ i_in ;

end

ass ign o_bit = sreg [0] ;

˝ Both registers one and two use the exact same logic

Ex: DblPipe

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

107 / 462

Exercise #4:

˝ Using dblpipe.v

– Prove that the output, o_data, is zero

Ex: LFSRs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

108 / 462

Galois and Fibonacci are supposedly identical

˝ Galois

˝ Fibonacci

˝ Exercise #5 will be to prove these two implementations are
identical

Ex: LFSRs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

109 / 462

Exercise #5:

˝ exercise-05/ contains files lfsr equiv.v, lfsr gal.v,
and lfsr fib.v.

˝ lfsr gal.v contains a Galois version of an LFSR
˝ lfsr fib.v contains a Fibonacci version of the same LFSR
˝ lfsr equiv.v contains an assertion that these are equivalent

Prove that these are truly equivalent shift registers.

Where is the bug?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Lesson Overview

vs BMC

General Rule

The Trap

Results

Ź Examples

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

110 / 462

Following an induction failure, look over the trace

If you see a problem in section . . .

A You have a missing one or more assertions
You’ll only have this problem with induction.

B You have a failing assert @(posedge clk)

C You have a failing assert @(∗)

These latter two indicate a potential logic failure, but they
could still be caused by property failures.

Bus Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Ź Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

111 / 462

Ex: WB Bus

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ź Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

112 / 462

We have everything we need now to write formal properties for a
bus

˝ This lesson walks through an example the Wishbone Bus

Our Objectives:

˝ Learn to apply formal methods to something imminently
practical

˝ Learn to build the formal description of a bus component
˝ Help lead up to a bus arbiter component

AXI Channels

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

Ź AXI

Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

113 / 462

Avalon Channels

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Ź Avalon

Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

114 / 462

Wishbone Channels

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Ź Wishbone

WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

115 / 462

˝ Why use the Wishbone? It’s simpler!

WB Signals

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

116 / 462

From the master’s perspective:
Specification name My name

CYC O o wb cyc
STB O o wb stb
WE O o wb we

ADDR O o wb addr
DATA O o wb data
SEL O o wb sel

STALL I i wb stall
ACK I i wb ack
DATA I i wb data

ERR I i wb err

WB Signals

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

117 / 462

From the slave’s perspective:
Specification name My name

CYC I i wb cyc
STB I i wb stb
WE I i wb we

ADDR I i wb addr
DATA I i wb data
SEL I i wb sel

STALL O o wb stall
ACK O o wb ack
DATA O o wb data

ERR O o wb err
To swap perspectives from master to slave . . .

˝ Swap the port direction
˝ Swap the assume() statements for assert()s

Single Read

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

118 / 462

CLK

o CYC

o STB

o WE

o ADDR A0

o DATA

i STALL

i ACK

i DATA D0

˝ STB must be low when CYC is low
˝ If CYC goes low mid-transaction, the transaction is aborted
˝ While STB and STALL are active, the request cannot change
˝ One request is made for every clock with STB and !STALL

Single Read

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

119 / 462

CLK

o CYC

o STB

o WE

o ADDR A0

o DATA

i STALL

i ACK

i DATA D0

˝ One ACK response per request
˝ No ACKs allowed when the bus is idle
˝ No way to stall the ACK line
˝ The bus result is in i DATA when i ACK is true

Three Writes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

120 / 462

CLK

o CYC

o STB

o WE

o ADDR A1 A2 A3

o DATA D1 D2 D3

i STALL

i ACK

i DATA

Let’s start building some formal properties

CYC and STB

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

121 / 462

˝ The bus starts out idle, and returns to idle after a reset

always @ (posedge i_clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

assume (! i_wb_ack) ;
assume (! i_wb_err) ;
//
as se r t (! o_wb_cyc) ;
as se r t (! o_wb_stb) ;

end

CYC and STB

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

121 / 462

˝ The bus starts out idle, and returns to idle after a reset

always @ (posedge i_clk)
i f ((! f_past_valid) | | ($past (i_reset)))
begin

assume (! i_wb_ack) ;
assume (! i_wb_err) ;
//
as se r t (! o_wb_cyc) ;
as se r t (! o_wb_stb) ;

end

˝ STB is low whenever CYC is low

always @ (∗)
i f (! o_wb_cyc)

as se r t (! o_wb_stb) ;

The Master Waits

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

122 / 462

˝ While STB and STALL are active, the request doesn’t change

ass ign f_request = { o_stb , o_we , o_addr ,
o_data } ;

always @ (posedge clk)
i f ($past (o_wb_stb)&&($past (i_wb_stall)))

as se r t (f_request == $past (f_request)) ;

˝ Did we get it?

The Master Waits

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

122 / 462

˝ While STB and STALL are active, the request doesn’t change

ass ign f_request = { o_stb , o_we , o_addr ,
o_data } ;

always @ (posedge clk)
i f ($past (o_wb_stb)&&($past (i_wb_stall)))

as se r t (f_request == $past (f_request)) ;

˝ Did we get it? Well, not quite
o_data is a don’t care for any read request

The Master Waits

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

Ź WB Basics

WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

123 / 462

˝ While STB and STALL are active, the request doesn’t change

ass ign f_rd_request = { o_stb , o_we , o_addr } ;
ass ign f_wr_request = { f_rd_request , o_data } ;

always @ (posedge clk)
i f ((f_past_valid)
&&($past (o_wb_stb))&&($past (i_wb_stall)))

begin
// F i r s t , f o r reads ´́ o da ta i s a don ’ t c a r e
i f ($past (! i_wb_we))

as se r t (f_rd_request == $past (f_rd_request)) ;
// Second , f o r w r i t e s ´́ o da ta must not change
i f ($past (i_wb_we))

as se r t (f_wr_request == $past (f_wr_request)) ;
end

CYC and STB

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

124 / 462

˝ No acknowledgements without a request
˝ No errors without a request
˝ Following any error, the bus cycle ends
˝ A bus cycle can be terminated early

Bus example

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

125 / 462

The rule: the slave (external) cannot stall the master more than
F_OPT_MAXSTALL counts:

i n i t i a l f_stall_count = 0 ;
always @ (posedge i_clk)
i f ((i_reset) | | (! o_CYC) | | ((o_STB)&&(!i_STALL)))

f_stall_count <= 0 ;
e l s e i f (o_STB)

f_stall_count <= f_stall_count + 1 ’b1 ;

always @ (posedge i_clk)
i f (o_CYC)

assume (f_stall_count < F_OPT_MAXSTALL) ;

This solves the i_ce problem, this time with the i_STALL signal

Bus example

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

126 / 462

The rule: the slave can only respond to requests

i n i t i a l f_nreqs = 0 ;
always @ (posedge clk)
i f ((i_reset) | | (! i_CYC))

f_nreqs <= 1 ’b0 ;
e l s e i f ((i_STB)&&(!o_STALL))

f_nreqs <= f_nreqs + 1 ’b1 ;
// S im i l a r coun t e r f o r acknowledgements
always @ (∗)
i f (f_nreqs == f_nacks)

as se r t (! o_ACK) ;

The logic above almost works. Can any one spot the problems?

Two Exercises

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

127 / 462

Let’s build up to proving a WB arbiter

˝ Let’s prove (BMC + k-Induction) . . .

1. Exercise #6: A simple arbiter
exercise-06/reqarb.v

2. Exercise #7: Then a Wishbone bus arbiter
exercise-07/wbpriarbiter.v

˝ Given a set of bus properties: fwb slave.v

Simple Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

128 / 462

The basics

˝ *_req requests a transaction
˝ *_data, the contents of the transaction
˝ *_busy, true if the source must wait

Simple Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

129 / 462

˝ If (∗_req)&&(!∗_busy),
the request is accepted

˝ If (∗_req)&&(∗_busy),
the request may not change, except on reset

Simple Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

130 / 462

To prove:

˝ No data will be lost, no requests will be dropped
Assume all requests remain stable until accepted

˝ Only one source ever gets access at a time
Assert one busy line is always high

˝ Therefore, all requests go through . . . eventually
This is a natural consequence of the above. Don’t worry
about starvation here.

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

131 / 462

Shall we try this with Wishbone?

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

132 / 462

This request side is almost identical

˝ If (STB)&&(!STALL)

the request is accepted
˝ If (STB)&&(STALL)

the request must not change

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

133 / 462

The difference is the acknowledgements

˝ The arbiter cannot change during an active transaction
˝ All requests get responses
˝ No response can be returned without a request

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

134 / 462

Now, prove that exercise-07/wbpriarbiter.v works.

˝ Use both BMC and k-induction (mode prove)
˝ You’ll need to build fwb master.v properties

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

135 / 462

The fwb slave.v properties will

˝ Assume a behaving master
˝ Assert a behaving slave

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

136 / 462

You’ll write the fwb master.v properties

˝ Swapping inputs with outputs

– Port names need not change

˝ Swapping assumptions with assertions

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

137 / 462

The magic is in how the files are connected

˝ If one interface is connected, both master and slave. . .

– Should see the same number of requests
– Should see the same number of acknowledgements

WB Arbiter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

138 / 462

The magic is in how the files are connected

˝ If one interface is connected, the other . . .

– Should not have made any successful requests
– Should not have received any acknowledgements

File Structure

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

139 / 462

˝ Traditional test-bench file structure
˝ Doesn’t work with yosys formal
˝ Why not?

Single File

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

140 / 462

˝ Formal Properties can be placed at the bottom
˝ This works well for testing some modules
˝ What’s the limitation?

Multiple Files

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

141 / 462

˝ Design with multiple files
˝ They were each formally correct
˝ Problems?

Multiple Files

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

141 / 462

˝ Design with multiple files
˝ They were each formally correct
˝ Problems? Yes! In induction
˝ State variables needed to be formally synchronized (assert())

Multiple Files

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ex: WB Bus

AXI

Avalon

Wishbone

WB Basics

Ź WB Basics

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

142 / 462

Proving properties for many components together can quickly
get out of hand!

Free Variables

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Ź Free Variables

Lesson Overview

Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

143 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Ź Lesson Overview

Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

144 / 462

When dealing with memory, ...

˝ Testing the entire memory is not required
˝ Testing an arbitrary value is

It’s time to discuss (∗ anyconst ∗) and (∗ anyseq ∗)

Objectives

˝ Understand what a free variable is
˝ Understand how (∗ anyconst ∗) and (∗ anyseq ∗) can be

used to create free variables
˝ Learn how you can use free variables to validate memory and

memory interfaces

any*

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Ź Formal

Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

145 / 462

˝ (∗ anyconst ∗)

(∗ anyconst ∗) wire [N´1:0] cval ;

– Can be anything
– Defined at the beginning of time
– Never changed

˝ (∗ anyseq ∗)

(∗ anyseq ∗) wire [N´1:0] sval ;

– Can change from one timestep to the next

Both can still be constrained via assume() statements

Memory

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Ź Memory

So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

146 / 462

How might you verify a memory with this?

(∗ anyconst ∗) wire [AW´1:0] f_const_addr ;
reg [DW´1:0] f_mem_value ;

// Handle w r i t e s
always @ (posedge i_clk)
i f ((i_stb)&&(i_we)&&(i_addr == f_const_addr))

f_mem_value <= i_data ;

// Handle r e ad s
always @ (posedge i_clk)
i f ((f_past_valid)&&($past (i_stb))&&(! $past (i_we))

&&($past (i_addr == f_const_addr)))
as se r t (o_data == f_mem_value) ;

So what?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Memory

Ź So what?

Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

147 / 462

Consider the specification of a prefetch

˝ The contract

(∗ anyconst ∗) wire [3 1 : 0] f_const_data ;

always @ (posedge i_clk)
i f ((o_valid)&&(o_pc == f_const_addr))

as se r t (o_insn == f_const_data) ;

˝ You’ll also need to assume a bus input

always @ (posedge i_clk)
i f ((i_ack)&&(ackd_address == f_const_addr))

assume (i_data == f_const_data) ;

Rule of Free Variables

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Memory

So what?

Ź Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

148 / 462

How would our general rule apply here?

˝ Assume inputs, assert internal state and outputs
˝ Both (∗ anyconst ∗) and (∗ anyseq ∗) act like inputs
˝ You could have written

input wire i_value ;

always @ (posedge i_clk)
assume (i_value == $past (i_value)) ;

for the same effect as (∗ anyconst ∗)

˝ assume() them therefore, and not assert()

Ex: Flash Controller

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Memory

So what?

Ź Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

149 / 462

This works for a flash (or other ROM) controller too:

(∗ anyconst ∗) wire [AW´1:0] f_addr ;
(∗ anyconst ∗) wire [DW´1:0] f_data ;

always @ (∗)
i f ((o_wb_ack)&&(f_request_addr == f_addr))

as se r t (o_wb_data == f_data) ;

Don’t forget the corollary assumptions!

always @ (∗)
i f (f_request_addr == f_addr)

assume (i_spi_miso
== f_data [controller_state]) ;

. . . or something similar

Ex: Serial Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Memory

So what?

Ź Rule

Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

150 / 462

You can use this to build a serial port transmitter

(∗ anyseq ∗) wire f_tx_start ;
(∗ anyseq ∗) wire [7 : 0] f_tx_data ;
always @ (∗)
i f (f_tx_busy)

assume (! f_tx_start) ;

always @ (posedge f_txclk)
i f (f_tx_busy)

assume (f_tx_data == $past (f_tx_data)) ;

You can then

˝ Tie assertions to partially received data
˝ . . . and pass induction

Discussion

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Memory

So what?

Rule

Ź Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

151 / 462

How would you use free variables to verify a cache
implementation?

Discussion

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Lesson Overview

Formal

Memory

So what?

Rule

Ź Discussion

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

151 / 462

How would you use free variables to verify a cache
implementation?

Hint: you only need three properties for the cache contract

Abstraction

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Ź Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

152 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Ź Lesson Overview

Formal

Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

153 / 462

˝ Proving simple modules is easy.
˝ What about large and complex ones?

It’s time to discus abstraction.
Objectives

˝ Understand what abstraction is
˝ Gain confidence in the idea of abstraction
˝ Understand how to reduce a design via abstraction

Abstraction Formally

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Ź Formal

Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

154 / 462

Formally, if

AÑ C

then we can also say that

pABq Ñ C

Formal Proof

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Ź Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

155 / 462

Shall we go over the proof?

AÑ C ñ A_ C “ True

True or anything is still true, so

p A_ Cq _ B

Rearranging terms

 A_ B _ C

 pABq _ C

Expressing as an implication

pABq Ñ C

Q.E.D.!

So what?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Ź Proof

Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

156 / 462

With every additional module,

˝ Formal verification becomes more difficult
˝ Complexity increases exponentially
˝ You only have so many hours and dollars

On the other hand,

˝ Anything you can simplify by abstraction . . .
˝ is one less thing you need to prove

In Pictures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

157 / 462

Suppose your state space looked like this

˝ It takes many transitions required to get to interesting states

In Pictures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

158 / 462

Suppose we added to this design . . .

˝ Some additional states, and
˝ Additional transitions

The real states and transitions must still remain

In Pictures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

159 / 462

If this new design still passes, then . . .

˝ Since the original design is a subset . . .
˝ The original design must also still pass

If done well, the new design will require less effort to prove

A CPU

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

160 / 462

Where would you start?

A CPU

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

160 / 462

Where would you start?

At the interfaces!

Prefetch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

161 / 462

Let’s consider a prefetch module as an example.

If you do this right,

˝ Any internally consistent Prefetch,
˝ that properly responds to the CPU, and
˝ interacts properly with the bus,
˝ must work!

Care to try a different prefetch approach?

Prefetch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

162 / 462

Suppose the prefetch was just a shell

It would still interact properly with

˝ The bus, and
˝ The CPU
˝ It just might not return values from the bus to the CPU

Prefetch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Ź Pictures

Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

163 / 462

Suppose the prefetch was just a shell

If the CPU still acted “correctly”

˝ With either the right, or the wrong instructions, then
˝ The CPU must act correctly with the right instructions

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝

If
And
Then

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝ Prefetch is bus master, interfaces w/CPU

If (Prefetch responds to CPU insn requests)
And (Prefetch produces the right instructions)
Then (The prefetch works within the design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝ The CPU is just a wishbone master within a design

If (The CPU is valid bus master)
And (CPU properly executes instructions)
Then (CPU works within a design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝ The ALU must return a calculated number

If (ALU returns a value when requested)
And (It is the right value)
Then (The ALU works within the design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝ A flash device responds in 8-80 clocks

If (Bus master reads/responds to a request)
And (The response comes back in 8-80 clocks)
Then (The CPU can interact with a flash memory)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝ The divide must return a calculated number

If (Divide returns a value when requested)
And (It is the right value)
Then (The divide works within the design)

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

164 / 462

Consider these statements:

˝ Formal solvers break down when applied to multiplies

If (Multiply unit returns an answer N clocks later)
And (It is the right value)
Then (The multiply works within the design)

Abstracted CPU components

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

165 / 462

Looking at the CPU again,

˝ Replace all the components with abstract shells
˝ . . . shells that might produce the same answers

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

166 / 462

Let’s consider a fractional counter:

reg [3 1 : 0] r_count ;
i n i t i a l r_count = 0 ;
i n i t i a l o_pps = 0 ;
always @ (posedge i_clk)

{ o_pps , r_count } <= r_count + 32 ’ d43 ;

The problem with this counter

˝ It will take 100ˆ 10
6 clocks to roll over and set o_pps

˝ Formally checking 100ˆ 10
6 clocks is prohibitive

We’ll need a better way, or we’ll never deal with this

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

167 / 462

How might we build an abstract counter?

˝ First, create an arbitrary counter increment

(∗ anyseq ∗) wire [3 1 : 0] increment ;
ass ign rollover = ´ r_count ;
always @ (∗)
begin

assume (increment > 0) ;
assume (increment < { 2 ’h1 , 30 ’h0 }) ;
i f (rollover < 32 ’ d43)

assume (increment == 32 ’ d43) ;
e l s e

assume (increment < rollover) ;
end

The correct increment, 32’d43, must be a possibility

Back to the Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

168 / 462

We can now increment our counter by this arbitrary increment

always @ (posedge i_clk)
{ o_pps , r_count } <= r_count + increment ;

Will this work?

˝ Let’s try this to see!

always @ (posedge i_clk)
i f (f_past_valid)

as se r t (r_count != $past (r_count)) ;

always @ (posedge i_clk)
i f ((f_past_valid)&&(r_count < $past (r_count)))

as se r t (o_pps) ;

Other Possibilities

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Ź Examples

Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

169 / 462

How else might you use this?

˝ Bypassing the runup for an external peripheral
˝ Testing a real-time clock or date

Or . . . how about that CPU?

Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

170 / 462

Let’s modify this abstract counter

˝ Increment by one, rather than fractionally

Exercise Objectives:

˝ Prove a design works both with and without abstraction
˝ Gain some confidence using abstraction

Exercise #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

171 / 462

Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Build it so that . . .

always @ (∗)
as se r t (o_carry == (r_count == 0)) ;

// and

always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past(&r_count)))

as se r t (! o_carry) ;

˝ Prove that this abstracted counter works

Exercise #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

172 / 462

Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Prove that this abstracted counter works

Exercise #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Lesson Overview

Formal

Proof

Pictures

Examples

Ź Exercise

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

172 / 462

Your task:

˝ Rebuild the counter
˝ Make it increment by one
˝ Prove that this abstracted counter works

Hints:

˝ &r_count must take place before r_count==0

˝ You cannot skip &r_count

˝ Neither can you skip r_count == 0

Invariants

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Ź Invariants

Lesson Removed

Multiple-Clocks

Cover

Sequences

Quizzes

173 / 462

Lesson Removed

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Ź Lesson Removed

Multiple-Clocks

Cover

Sequences

Quizzes

174 / 462

This lesson is currently being revised, and will be released again
shortly

Multiple-Clocks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Ź Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

175 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Ź Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

176 / 462

The SymbiYosys option multiclock . . .

˝ Used to process systems with dissimilar clocks
˝ Examples

– A serial port, with a formally generated transmitter
coming from a different clock domain

– A SPI controller that needs both high speed and low
speed logic

Our Objective:

˝ To learn how to handle multiple clocks within a design

– (∗ gclk ∗)

– $stable, $changed

– $rose, $fell

SymbiYosys config change

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

Ź SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

177 / 462

[opt ions]
mode prove

mult ic lock on

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys config change

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

Ź SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

177 / 462

[opt ions]
mode prove

mult ic lock on Multiple clocks require this line

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
prep ´top module

[f i l e s]
f i l e l i s t

Five Tools

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

Ź SBY File

(* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

178 / 462

˝ (∗ gclk ∗)

Provides access to the global formal time-step
˝ $stable

True if a signal is stable (i.e. doesn’t change) with this clock.
Equivalent to A == $past(A)

˝ $changed

True if a signal has changed since the last clock tick.
Equivalent to A != $past(A)

˝ $rose

True if the signal rises on this formal time-step
This is very useful for positive edged clocks transitions
$rose(A) is equivalent to (A[0])&&(!$past(A[0]))

˝ $fell

True if a signal falls on this time-step, creating a negative
edge
$fell (A) is equivalent to (!A[0])&&($past(A[0]))

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

179 / 462

˝ A global formal time step

(∗ gclk ∗) wire gbl_clk ;

˝ You can use this to describe clock properties

// Assume a s i n g l e c l o c k s i g n a l
//
reg f_last_clk ;

i n i t i a l f_last_clk = 0 ;
always @ (posedge gbl_clk)
begin

f_last_clk <= ! f_last_clk ;
assume (i_clk == f_last_clk) ;

end

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

180 / 462

always @ (posedge gbl_clk)
begin

f_last_clk <= ! f_last_clk ;
assume (i_clk == f_last_clk) ;

end

f last clk

i clk

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

181 / 462

˝ Used to gain access to the formal time-step

(∗ gclk ∗) wire gbl_clk ;

˝ You can use this to describe clock properties

// Assume two r e l a t e d c l o c k s i g n a l s
//
reg [2 : 0] f_clk_counter ;

i n i t i a l f_clk_counter = 0 ;
always @ (posedge gbl_clk)
begin

f_clk_counter <= f_clk_counter + 1 ’b1 ;
assume (i_clk_fast == f_clk_counter [0]) ;
assume (i_clk_slow == f_clk_counter [2]) ;

end

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

182 / 462

The clock logic on the last slide forces these two clocks to be in
sync
f clk counter 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0

i clk fast

i clk slow

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

183 / 462

˝ Used to gain access to the formal time-step
˝ You can use this to describe clock properties

// Assume two c l o ck s , same speed ,
// unknown con s t an t phase o f f s e t
(∗ gclk ∗) wire gbl_clk ;
(∗ anyconst ∗) wire [2 : 0] f_clk_offset ;

i n i t i a l f_clk_counter= 0 ;
always @ (posedge gbl_clk)
begin

f_clk_counter <= f_clk_counter + 1 ’b1 ;
f_clk_two <= f_clk_counter

+ f_clk_offset ;
assume (i_clk_one == f_clk_counter [2]) ;
assume (i_clk_two == f_clk_two [2]) ;

end

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

184 / 462

The formal tool will pick the phase offset between these two
generated clock waveforms
f clk counter 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

i clk one

i clk two

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

185 / 462

How might you describe two unrelated clocks?

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

185 / 462

How might you describe two unrelated clocks?

(∗ gclk ∗) wire gbl_clk ;
(∗ anyconst ∗) wire [7 : 0] f_a_step ;
always @ (∗)
assume ((f_a_step > 0) &&(f_a_step [7] == 1 ’b0)) ;

always @ (posedge gbl_clk)
begin

f_a_counter <= f_a_counter + f_a_step ;

assume (i_clk_a == f_a_counter [7]) ;
end

˝ The (∗ anyconst ∗) register may take on any constant value
˝ You can repeat this logic for the second clock.

(* gclk *)

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

Ź (* gclk *)

$rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

186 / 462

The timing relationship between these two clocks can be
anything

˝ Each clock can have an arbitrary frequency
˝ Each clock can have an arbitrary phase

Here’s a theoretical example trace

i_clk_a

i_clk_b

Don’t be surprised by the appearance of phase noise

Bonus: The trace above isn’t realistic. Why not?

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

187 / 462

Synchronous logic has some requirements

˝ Inputs should only change on a clock edge
They should be stable otherwise

˝ $rose(i_clk) can be used to express this

Here’s an example using $rose(i_clk) . . .

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

assume (i_input == $past (i_input)) ;

$fell

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

188 / 462

$fell is like $rose, only it describes a negative edge

i_clk

$rose(i_clk)

$fell (i_clk)

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

189 / 462

Let’s go back to the synchronous logic requirements

˝ Inputs only change on clock edges
˝ $rose(i_clk) and $fell (i_clk) can be used to express this
˝ Let’s try this out

Would this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (i_input == $past (i_input)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

189 / 462

Let’s go back to the synchronous logic requirements

˝ Inputs only change on clock edges
˝ $rose(i_clk) and $fell (i_clk) can be used to express this
˝ Let’s try this out

Would this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (i_input == $past (i_input)) ;

˝ No. The general rule hasn’t changed

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

190 / 462

Could we do it this way?

always @ (posedge gbl_clk)
i f ($ f e l l (i_clk))

as se r t (state == $past (state)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

190 / 462

Could we do it this way?

always @ (posedge gbl_clk)
i f ($ f e l l (i_clk))

as se r t (state == $past (state)) ;

˝ No, this doesn’t work either

i_clk

state Stable Unconstrained Stable Unconstrained

$fell (i_clk)

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

191 / 462

Is this equivalent?

always @ (posedge gbl_clk)
i f (! $past (i_clk))

as se r t (state == $past (state)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

191 / 462

Is this equivalent?

always @ (posedge gbl_clk)
i f (! $past (i_clk))

as se r t (state == $past (state)) ;

˝ Why not?

i_clk

state Unconstrained Stable Uncon No change Uncon

!$past(i_clk)

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

192 / 462

This fixes our problems. Will this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (state == $past (state)) ;

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

192 / 462

This fixes our problems. Will this work?

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t (state == $past (state)) ;

˝ Not quite. Can you see the problem?

$rose

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

Ź $rose

$stable

Examples

Exercises

Cover

Sequences

Quizzes

193 / 462

˝ State/outputs should be clock synchronous

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(!$rose (i_clk))

as se r t (state == $past (state)) ;

˝ With f_past_valid this works

i_clk

state Stable Stable Stable

f_past_valid

!$rose(i_clk)

˝ $rose requires a clock, such as
always @(posedge gbl_clk)

$stable

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

Ź $stable

Examples

Exercises

Cover

Sequences

Quizzes

194 / 462

Describes a signal which has not changed

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(! $rose (i_clk)))

as se r t ($stab le (state)) ;

˝ Requires a clock edge

always @(posedge gbl_clk)

always @(posedge i_clk)

˝ This is basically the same as state == $past(state)

$stable

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

Ź $stable

Examples

Exercises

Cover

Sequences

Quizzes

195 / 462

Caution: $stable(X) might still change between clock edges

always @ (posedge i_clk)
assume ($stab le (i_value)) ;

The waveform below would satisfy the assumption above

i_clk

i_value 0 1 0 1 0 1 0 1 0 1 0

$past(i_value) 0 0 0

$stable(i_value)

The key to understanding what’s going on is to realize . . .

˝ The assumption is only evaluated on @(posedge i_clk)

˝ $past(i_value) is only sampled @(posedge i_clk)

˝ . . . and not on the formal (∗ gclk ∗) time step.

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

196 / 462

˝ Most logic doesn’t need the multiclock option
˝ To help with logic that might need it, I use a parameter

parameter [0 : 0] F_OPT_CLK2FFLOGIC = 1 ’b0 ;

generate i f (F_OPT_CLK2FFLOGIC)
begin

(∗ gclk ∗) wire gbl_clk ;

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(!$rose (i_clk)))
begin

assume ($stab le (i_axi_awready)) ;
assume ($stab le (i_axi_wready)) ;
// . . .

end
end endgenerate

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

197 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

197 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

i n i t i a l a s se r t (o_CS_n) ;
i n i t i a l a s se r t (o_SCK) ;

always @ (∗)
i f (! o_SCK)

as se r t (! o_CS_n) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

198 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you formally describe the o_SCK and o_CS_n

relationship?

always @ (posedge gbl_clk)
i f ((f_past_valid)

&&(($rose (o_CS_n)) | | ($ f e l l (o_CS_n))))
as se r t ((o_SCK)&&($stab le (o_SCK))) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

199 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe o_MOSI?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

199 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe o_MOSI?

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(!o_CS_n)&&(! $ f e l l (o_SCK)))

as se r t ($stab le (o_MOSI)) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

200 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe i_MISO?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

200 / 462

o CS n

o SCK

o MOSI

i MISO

˝ How would you describe i_MISO?

always @ (posedge gbl_clk)
i f ((! o_CS_n)&&(o_SCK))

assume ($stab le (i_MISO)) ;

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

201 / 462

o CS n

o SCK

o MOSI

i MISO

˝ Should the i_MISO be able to change more than once per
clock?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

202 / 462

˝ A little logic will force i_MISO to have only one transition per
clock

always @ (posedge gbl_clk)
i f ((o_CS_n) | | (o_SCK))

f_chgd <= 1 ’b0 ;
e l s e i f (i_MISO != $past (i_MISO))

f_chgd <= 1 ’b1 ;

always @ (posedge gbl_clk)
i f ((f_past_valid)&&(f_chgd))

assume ($stab le (i_MISO)) ;

˝ How would we force exactly 8 o_SCK clocks?

Ex SPI Port

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Ź Examples

Exercises

Cover

Sequences

Quizzes

203 / 462

˝ Forcing exactly 8 clocks

always @ (posedge gbl_clk)
i f (o_CS_n)

f_spi_bits <= 0 ;
e l s e i f ($rose (o_SCK))

f_spi_bits <= f_spi_bits + 1 ’b1 ;

always @ (posedge gbl_clk)
i f ((f_past_valid)&&($rose (o_CS_n)))

as se r t (f_spi_bits == 8) ;

˝ Don’t forget the induction requirement

always @ (∗)
as se r t (f_spi_bits <= 8) ;

Exercises

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

204 / 462

Three exercises, chose one to verify:

1. Input serdes
exercises-09/iserdes.v

2. Clock gate
exercises-10/clkgate.v

3. Clock Switch
exercises-11/clkswitch.v

Ex: Input Serdes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

205 / 462

Getting a SERDES right is a good example of multiple clocks

i fast clk

i pin

i slow clk

o word 0x0b

Ex: Input Serdes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

206 / 462

Getting a SERDES right is a good example of multiple clocks

˝ Two clocks, one fast and one slow

Clocks must be synchronous
$rose(slow_clk) implies $rose(fast_clk)

˝ exercise-09/ Contains the file iserdes.v
˝ Can you formally verify that it works?

Ex: Input Serdes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

207 / 462

Be aware of the asynchronous reset signal!

i areset n

i fast clk

i pin

i slow clk

o word Prior value RESET RESET

˝ Can be asserted at any time
˝ Can only be de-asserted on $rose(i_slow_clk)

˝ assume() these properties, since the reset is an input

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

208 / 462

The goal: a clock that can be gated, that doesn’t glitch

˝ exercise-10/ Contains the file clkgate.v

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

209 / 462

The goal: a clock that can be gated, that doesn’t glitch

i clk

i en

o clk

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

210 / 462

The goal: a clock that can be gated, that doesn’t glitch

˝ One clock, one unrelated enable
˝ Prove that the output clock

– is always high for the full width, but
– . . . never longer.
– For any clock rate

See exercise-10/clkgate.v

Ex: Clock Gate

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

211 / 462

Hints:

˝ The output clock should only rise if the incoming clock rises
˝ The output clock should only fall if the incoming clock fall
˝ If the output clock is ever high, it should always fall with the

incoming clock

Be aware of the reset! The output clock might fall mid-clock
period due to the asynchronous reset.

Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

212 / 462

Goal: To safely switch from one clock frequency to another

Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

213 / 462

Goal: To safely switch from one clock frequency to another

˝ Inputs

– Two arbitrary clocks
– One select line

Prove that the output clock

˝ Is always high (or low) for at least the duration of one of the
clocks

˝ Doesn’t stop

You may need to constrain the select line.

Ex: Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Basics

SBY File

(* gclk *)

$rose

$stable

Examples

Ź Exercises

Cover

Sequences

Quizzes

214 / 462

Hints:

˝ You may assume the reset is only ever initially true
˝ Only one set of FF’s should ever change at any time

Cover

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Ź Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

215 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Ź Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

216 / 462

The cover element is used to make certain something remains
possible

˝ BMC and induction test safety properties
They prove that something will not happen

˝ Cover tests a liveness property
It proves that something may happen

Objectives

˝ Understand why cover is important
˝ Understand how to use cover

Why Cover

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Ź Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

217 / 462

Personal examples:

˝ Forgot to set f_past_valid to one
Many assertions were ignored

˝ Av to WB bridge, passed FV, but couldn’t handle writes
˝ Error analysis

The simulation trace doesn’t make sense. Can it be
reproduced?

˝ As an anti-assertion
Can this situation actually happen?

What is cover good for? Catching the careless assumption!
What else? Ad hoc simulation traces!

BMC vs Cover

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

Ź BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

218 / 462

Cover is more like BMC than Induction is

˝ BMC

˝ Cover

˝ BMC searches for failures
˝ Cover searches for a success

Formally, we might say . . .

˝ BMC + k-Induction: proof for all
@assume()ñ @assert()

˝ Cover: there exists one
@assume()ñ Dcover()

Cover in Verilog

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Ź Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

219 / 462

Just like an assumption or an assertion

// Make s u r e a w r i t e i s p o s s i b l e
always @ (posedge i_clk)
cover ((o_wb_stb)&&(!i_wb_stall)&&(o_wb_we)) ;

// Or

// What happens when a bus c y c l e i s abo r t ed ?
always @ (posedge i_clk)
i f (i_reset)

cover ((o_wb_cyc)&&(f_wb_outstanding >0)) ;

Well, almost but not quite.

Cover in Verilog

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Ź Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

220 / 462

Assert and cover handle surrounding logic differently

˝ Assert logic

always @ (posedge i_clk)
i f (A)

as se r t (B) ;

is equivalent to,

always @ (posedge i_clk)
as se r t ((! A) | | (B)) ;

This is not true of cover.

Cover in Verilog

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Ź Cover in Verilog

State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

221 / 462

Assert and cover handle surrounding logic differently

˝ Assert logic
˝ Cover logic

always @ (posedge i_clk)
i f (A)

cover (B) ;

is equivalent to,

always @ (posedge i_clk)
cover ((A) && (B)) ;

// NOT the same as
// a s s e r t ((!A) | | (B)) ;

State Space

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

Ź State Space

SymbiYosys

Examples

Counter

Sequences

Quizzes

222 / 462

˝ Goal is to prove certain state’s are reachable
˝ Prover solves for example traces

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

223 / 462

The SymbiYosys script for cover needs to change as well

˝ SymbiYosys needs the option: mode cover

˝ Produces one trace per cover() statement
. . . or fail

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

224 / 462

[opt ions]
mode cover

depth 40
append 20

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

224 / 462

[opt ions]
mode cover Run a coverage analysis
depth 40
append 20

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

224 / 462

[opt ions]
mode cover

depth 40 How far to look for a covered state
append 20

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys cover config

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

224 / 462

[opt ions]
mode cover

depth 40
append 20 Follow each trace with 20 extra clocks

[engines]
smtbmc

[s c r i p t]
read ´formal module . v
prep ´top module

[f i l e s]
f i l e l i s t

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf Run two tasks: prf and cvr
cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf

cvr

[opt ions]
prf : mode prove The prf tasks runs induction
cvr : mode cover

depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover The cvr tasks runs in cover mode
depth 40

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40 The same depth can apply to both

. . .

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

% sby -f sbyfil.sby now runs both modes

SymbiYosys tasks

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

225 / 462

[tasks]
prf

cvr

[opt ions]
prf : mode prove

cvr : mode cover

depth 40

. . .

% sby -f sbyfil.sby cvr will run the cover mode alone

Cover Failures

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

Ź SymbiYosys

Examples

Counter

Sequences

Quizzes

226 / 462

Two basic types of cover failures

1. Covered state is unreachable
No VCD file will be generated upon failure

2. Covered state is reachable, but only by breaking assertions
VCD file will be generated

Ex: I-Cache

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Quizzes

227 / 462

Consider a CPU I-cache:

always @ (posedge i_clk)
cover (o_valid) ;

With no other formal logic, what will this trace look like?

˝ CPU must provide a PC address
˝ Design must fill the appropriate cache line
˝ Design returns an item from that cache line

That’s a lot of trace for two lines of HDL!

Ex: Flash

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Quizzes

228 / 462

Consider a Flash controller:

always @ (posedge i_clk)
cover (o_wb_ack) ;

With no other formal logic, what will this trace look like?
The controller must,

˝ Initialize the flash device
˝ Accept a bus request
˝ Request a read from the flash
˝ Accumulate the result to return on the bus

Ex: MMU

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Quizzes

229 / 462

Consider a Memory Management Unit (MMU):

always @ (posedge i_clk)
cover (o_wb_ack) ;

The MMU must,

˝ Be told a TLB entry
˝ Accept a bus request
˝ Look the request up in the TLB
˝ Forward the modified request downstream
˝ Wait for a return
˝ Forward the value returned upstream

Ex: SDRAM

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Ź Examples

Counter

Sequences

Quizzes

230 / 462

How about an SDRAM controller?

always @ (posedge i_clk)
cover (o_wb_ack) ;

The controller must,

˝ Initialize the SDRAM
˝ Accept a bus request
˝ Activate a row on a bank
˝ Issue a read (or write) command from that row
˝ Wait for a return value
˝ Return the result

Counter

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

231 / 462

Remember our counter?

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= MAX_AMOUNT´1’b1 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ’b1 ;

always @ (∗)
o_busy = (counter != 0) ;

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

232 / 462

Let’s add some cover statements. . .

// T r a n s i t i o n to busy
always @ (posedge i_clk)
i f ((f_past_valid)&&(!$past (o_busy)))

cover (o_busy) ;

// T r a n s i t i o n back to i d l e
always @ (posedge i_clk)
i f ((f_past_valid)&&($past (o_busy)))

cover (! o_busy) ;

// Mid´c y c l e
always @ (posedge i_clk)

cover (counter == 3) ;

Will SymbiYosys find traces?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

233 / 462

How about now?

always @ (posedge i_clk)
cover ((o_busy)&&(counter == 0)) ;

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

233 / 462

How about now?

always @ (posedge i_clk)
cover ((o_busy)&&(counter == 0)) ;

Or this one,

always @ (posedge i_clk)
cover (counter == MAX_AMOUNT) ;

Will these succeed?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

233 / 462

How about now?

always @ (posedge i_clk)
cover ((o_busy)&&(counter == 0)) ;

Or this one,

always @ (posedge i_clk)
cover (counter == MAX_AMOUNT) ;

Will these succeed? No. Both will fail

˝ These are outside the reachable state space

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

234 / 462

What if the state is unreachable?

// Keep the coun t e r from ev e r s t a r t i n g
always @ (∗)

assume (! i_start_signal) ;

always @ (posedge i_clk)
cover (counter != 0) ;

Will this succeed?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

234 / 462

What if the state is unreachable?

// Keep the coun t e r from ev e r s t a r t i n g
always @ (∗)

assume (! i_start_signal) ;

always @ (posedge i_clk)
cover (counter != 0) ;

Will this succeed? No. This will fail with no trace.

˝ If i_start_signal is never true, the cover cannot be reached

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

235 / 462

What if an assertion needs to be violated?

always @ (∗)
as se r t (counter != 10) ;

always @ (posedge i_clk)
cover (counter == 4) ;

What will happen here?

Examples

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

235 / 462

What if an assertion needs to be violated?

always @ (∗)
as se r t (counter != 10) ;

always @ (posedge i_clk)
cover (counter == 4) ;

What will happen here?

˝ Cover statement is reachable
˝ But requires an assertion failure, so a trace is generated

Clock Switch

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

236 / 462

Covering the clock switch

˝ Shows the clock switching from fast to slow,
˝ and again from slow to fast

Ex #7 Revisited

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

237 / 462

Return to your Wishbone arbiter. Let’s cover four cases:

1. Cover both A and B receiving the bus
2. Cover how B will get the bus after A gets an

acknowledgement
3. Cover how A will get the bus after B gets an

acknowledgement
4. Add to the last cover

˝ B must request while A still holds the bus

Plot and examine traces for each cases. Do they look right?

˝ If everything works, the first case showing both A and B
receiving the bus will FAIL

˝ No trace is needed from that case
˝ After getting this failure, you may want to remove it from

your cover checks

Ex #7 Revisited

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

238 / 462

Notice what we just proved:

1. The arbiter will allow both sources to master the bus
2. The arbiter will transition from one source to another
3. The arbiter won’t starve A or B

This wasn’t possible with just the safety properties (assert
statements)

Discussion

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Lesson Overview

BMC vs Cover

Cover in Verilog

State Space

SymbiYosys

Examples

Ź Counter

Sequences

Quizzes

239 / 462

When should you use cover?

Sequences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Ź Sequences

Overview

Clocking

Bind

Sequences

Questions?

Quizzes

240 / 462

Lesson Overview

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

241 / 462

SystemVerilog has some amazing formal properties

˝ property can be assumed or asserted
By rewriting our assert’s and assume’s as properties, we can
then control when they are asserted or assumed better.

˝ bind formal properties to a subset of your design
Allows us to (finally) separate the properties from the module
they support

˝ sequence – A standard property description language

Objectives

˝ Learn the basics of SystemVerilog Assertions
˝ Gain confidence with yosys+verific

Building on the past

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

242 / 462

Much of what we’ve written can easily be rewritten in SVA

always @ (∗)
i f (A)

as se r t (B) ;

can be rewritten as,

as se r t property (@ (posedge i_clk)
A |´> B) ;

Note that this is now a clocked assertion, but otherwise it’s
equivalent

Building on the past

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

243 / 462

Much of what we’ve written can easily be rewritten in SVA

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (A)))

as se r t (B) ;

Can be rewritten as,

as se r t property (@ (posedge i_clk)
A |=> B) ;

Building on the past

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

243 / 462

Much of what we’ve written can easily be rewritten in SVA

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (A)))

as se r t (B) ;

Can be rewritten as,

as se r t property (@ (posedge i_clk)
A |=> B) ;

˝ Read this as A implies B on the next clock tick.
˝ No f_past_valid required anymore. This is a statement

about the next clock tick, not the last one.

These equivalencies apply to assume() as well

Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

244 / 462

You can also declare properties:

property SIMPLE_PROPERTY ;
@ (posedge i_clk) a |=> b ;

endproperty

as se r t property (SIMPLE_PROPERTY) ;

This would be the same as

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (a)))

as se r t (b) ;

Assume vs Assert

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

245 / 462

You could also do something like:

parameter [0 : 0] F_SUBMODULE = 1 ’b0 ;

generate i f (F_SUBMODULE)
begin

assume property (INPUT_PROP) ;
end e l s e begin

as se r t property (INPUT_PROP) ;
end endgenerate

as se r t property (LOCAL_PROP) ;
as se r t property (OUTPUT_PROP) ;

This would work quite nicely for a bus property file

Parameterized Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

246 / 462

Properties can also accept parameters

property IMPLIES (a , b) ;
@ (posedge i_clk)
a |´> b ;

endproperty

as se r t property (IMPLIES (x , y)) ;

Parameterized Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Overview

Clocking

Bind

Sequences

Questions?

Quizzes

247 / 462

Properties can also accept parameters

property IMPLIES_NEXT (a , b) ;
@ (posedge i_clk) a |=> b ;

endproperty

as se r t property (IMPLIES_NEXT (x , y)) ;

Remember, if you want to use |=>, $past, etc., you need to
define a clock.

Clocking

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Ź Clocking

Bind

Sequences

Questions?

Quizzes

248 / 462

Getting tired of writing @(posedge i_clk)?

˝ You can set a default clock

de fau l t c lock ing @ (posedge i_clk) ;
endclocking

Assumes i_clk if no clock is given.

Clocking

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Ź Clocking

Bind

Sequences

Questions?

Quizzes

249 / 462

Getting tired of writing @(posedge i_clk)?

˝ You can set a default clock
˝ You can set a default clock within a given block

c lock ing @ (posedge i_clk) ;
// Your p r o p e r t i e s can go he r e
// As wi th a s s e r t , assume ,
// sequence , e t c .

endclocking

Assumes i_clk for all of the properties within the clocking
block.

Global Clocking

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Ź Clocking

Bind

Sequences

Questions?

Quizzes

250 / 462

When using verific, $global clock must first be defined

(∗ gclk ∗) wire gbl_clk ;
g loba l c lock ing @ (posedge gbl_clk) ; endclocking

This defines the $global clock . . .

˝ as a positive edge transition of gbl_clk.
˝ The (∗ gclk ∗) attribute turns it into a formal timestep

Bind

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Bind

Sequences

Questions?

Quizzes

251 / 462

˝ Common bench testing works on black boxes
˝ This doesn’t work well with formal methods

Bind

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Bind

Sequences

Questions?

Quizzes

251 / 462

˝ Common bench testing works on black boxes
˝ This doesn’t work well with formal methods
˝ Placing properties within a module doesn’t separate the two

Bind

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Bind

Sequences

Questions?

Quizzes

251 / 462

˝ Common bench testing works on black boxes
˝ This doesn’t work well with formal methods
˝ Placing properties within a module doesn’t separate the two

Using the SVA bind command, we can

˝ Separate properties from a design
˝ Maintains the necessary “white box” perspective

Bind

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Bind

Sequences

Questions?

Quizzes

252 / 462

˝ Can bind to specific named variables

module mut (input i , output o) ;
reg r ;
// Your l o g i c he r e

endmodule

module mut_formal (input a , input b , input r) ;
// Your f o rma l p r o p e r t i e s go he r e

endmodule

bind mut mut_formal mut_instance (
// Bind i n p u t s t o g e t h e r
. a (i) , . b (o) , . r (r)
// The g e n e r a l fo rmat i s
. mut_formal_name (mut_name)) ;

˝ Note all mut_formal ports must be inputs

Bind

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Bind

Sequences

Questions?

Quizzes

253 / 462

˝ Can bind to specific named variables
˝ Can also make all variables available to your properties

module mut (input i , output o) ;
reg r ;
// Your l o g i c he r e

endmodule

module mut_formal (input i , input o , input r) ;
// Your f o rma l p r o p e r t i e s go he r e

endmodule

// Make e v e r y mut v a r i a b l e a v a i l a b l e i n
// mut fo rma l w i th a v a r i a b l e o f the same
// name
bind mut mut_formal mut_instance (. ∗) ;

˝ In order to use .∗, names must match

Bind

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Ź Bind

Sequences

Questions?

Quizzes

254 / 462

˝ Can bind to specific named variables
˝ Can also make all variables available to your properties
˝ Can pass parameters through as well

module mut (input i , output o) ;
parameter ONE = 5 ;
// Your l o g i c he r e

endmodule

module mut_formal (input i , input o , input r) ;
parameter TWO = 14 ;
// Your f o rma l p r o p e r t i e s go he r e

endmodule

bind mut mut_formal #(.TWO (ONE))
mut_instance (. ∗) ;

Sequences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

255 / 462

So far with properties,

˝ We haven’t done anything really all that new.
˝ We’ve just rewritten what we’ve done before in a new form.

Sequences are something new

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

256 / 462

With sequences, you can

˝ Specify a series of actions

sequence EXAMPLE ;
@ (posedge i_clk) a ##1 b ##1 c ##1 d ;

endsequence

In this example, b always follows a by one clock, c follows b,
and d follows c

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

257 / 462

With sequences, you can

˝ Specify a series of actions, separated by some number of
clocks

sequence EXAMPLE ;
@ (posedge i_clk) a ##2 b ##5 c ;

endsequence

In this example, b always follows a two clocks later, and c
follows five clocks after b

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

258 / 462

With sequences, you can

˝ Specify a series of predicates, separated in time
˝ Can express range(s) of repeated values

sequence EXAMPLE ;
@ (posedge i_clk) b [∗ 2 : 3] ##1 c ;

endsequence
// i s e q u i v a l e n t to . . .
sequence EXAMPLE_A_2x ; // 2x

@ (posedge i_clk) b ##1 b ##1 c ;
endsequence
// or
sequence EXAMPLE_A_3x ; // 3x

@ (posedge i_clk) b ##1 b ##1 b ##1 c ;
endsequence

Sequence

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

259 / 462

With sequences, you can

˝ Specify a series of predicates, separated in time
˝ Can express range(s) of repeated values

– [∗0:M] Predicate may be skipped
– [∗N:M] specifies from N to M repeats
– [∗N:$] Repeats at least N times, with no maximum

Ranges can include empty sequences, such as ##[∗0:4]

˝ Compose multiple sequences together

– AND, seq_1 and seq_2

– OR, seq_1 or seq_2

– NOT, not seq

And vs Intersect

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

260 / 462

The and and intersect operators are very similar

˝ and is only true if both sequences are true
˝ intersect is only true if both sequences are true and have the

same length

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

261 / 462

˝ Throughout

sequence A ;
@ (posedge i_clk)
(EXP) [∗ 0 : $] i n t e r s e c t SEQ ;

endsequence

is equivalent to

sequence B ;
@ (posedge i_clk)
(EXP) throughout SEQ ;

endsequence

The EXP expression must be true from now until SEQ ends

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

262 / 462

˝ Throughout
˝ Until

property A ;
@ (posedge i_clk)
(E1) [∗ 0 : $] ##1 (E2) ;

endproperty

is equivalent to

property B ;
@ (posedge i_clk)
(E1) un t i l E2 ;

endproperty

˝ until can only be used in a property, not within a sequence

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

262 / 462

˝ Throughout
˝ Until

property A ;
@ (posedge i_clk)
(E1) [∗ 0 : $] ##1 (E2) ;

endproperty

is equivalent to

property B ;
@ (posedge i_clk)
(E1) un t i l E2 ;

endproperty

˝ until can only be used in a property, not within a sequence

˝ There is an ugly subtlety here

– Must E2 ever take place?

Equivalences

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

263 / 462

˝ Throughout
˝ Until
˝ Within

sequence A ;
@ (posedge i_clk)
(1 [∗ 0 : $] ##1 S1 ##1 1 [∗ 0 : $])

i n t e r s e c t S2 ;
endsequence

is equivalent to

sequence B ;
@ (posedge i_clk)
(S1) with in S2 ;

endsequence

Returning to Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

264 / 462

Properties can reference sequences

˝ Directly

as se r t property (seq) ;
as se r t property (expr |´> seq) ;

˝ Implication: sequences can imply properties

as se r t property (seq |´> some_other_property) ;
as se r t property (seq |=> another_property) ;

Returning to Properties

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

265 / 462

Properties can include . . .

˝ if statements

as se r t property (i f (A) P1 e l s e P2) ;

˝ not, and, or even or statements

as se r t property (not P1) ;
as se r t property (P1 and P2) ;
as se r t property (P1 or P2) ;

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

266 / 462

A bus request will not change until it is accepted

property BUS_REQUEST_HOLD ;
@ (posedge i_clk)
(STB)&&(STALL)
|=> (STB)&&($stab le (REQUEST)) ;

endproperty

as se r t property (BUS_REQUEST_HOLD) ;

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

267 / 462

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

You no longer need to count stalls yourself.

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

267 / 462

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

You no longer need to count stalls yourself.
Could we do this with an until statement?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

268 / 462

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
(STB)&&(STALL) un t i l (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

What is the difference?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

268 / 462

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
(STB)&&(STALL) un t i l (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

What is the difference? The until statement goes forever, our
prior example was limited to MAX_STALL clock cycles.

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

268 / 462

A request persists until it is accepted

sequence BUS_REQUEST ;
@ (posedge i_clk)
(STB)&&(STALL) un t i l (STB)&&(!STALL) ;

endsequence

as se r t property (STB |´> BUS_REQUEST) ;

What is the difference?

But . . . what happens if RESET is asserted?

Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

269 / 462

A property can be conditionally disabled

sequence BUS_REQUEST ;
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (
@ (posedge i_clk)
d i sab l e iff (i_reset)
STB |´> BUS_REQUEST) ;

The assertion will no longer fail if i_reset clears the request
What if the request is aborted?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

270 / 462

A property can be conditionally disabled

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
STB |´> BUS_REQUEST) ;

Will this work?

Ex. Bus Request

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

270 / 462

A property can be conditionally disabled

sequence BUS_REQUEST ;
@ (posedge i_clk)
// Repeat up to MAX STALL c l k s
(STB)&&(STALL) [∗ 0 : MAX_STALL]
##1 (STB)&&(!STALL) ;

endsequence

as se r t property (
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
STB |´> BUS_REQUEST) ;

Will this work? Yes!

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

271 / 462

Some peripherals will only ever accept one request

sequence SINGLE_ACK (MAX_DELAY) ;
@ (posedge i_clk)
(! ACK)&&(STALL) [∗ 0 : MAX_DELAY]
##1 (ACK)&&(!STALL) ;

endsequence

as se r t property (
d i sab l e iff ((i_reset) | | (! CYC))
(STB)&&(!STALL) |=> SINGLE_ACK (3 2) ;
) ;

This peripheral will

˝ Stall up to 32 clocks following any accepted request, until it
˝ Acknowledges the request, and
˝ Releases the bus on the same cycle

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

272 / 462

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL (DELAY) ;
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
(STB) |´> ##[∗DELAY] (ACK) ;

endproperty

as se r t property (NEVER_STALL (DELAY)
and (! STALL)) ;

This is illegal. Can you spot the bug?

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

272 / 462

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL (DELAY) ;
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
(STB) |´> ##[∗DELAY] (ACK) ;

endproperty

as se r t property (NEVER_STALL (DELAY)
and (! STALL)) ;

This is illegal. Can you spot the bug? What logic does the
disable iff apply to?

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

273 / 462

Some peripherals will

˝ Never stall the bus, and
˝ Acknowledge every request after a fixed number of clock ticks

property NEVER_STALL (DELAY) ;
@ (posedge i_clk)
d i sab l e iff ((i_reset) | | (! CYC))
(STB) |´> ##[∗DELAY] (ACK) ;

endproperty

as se r t property (NEVER_STALL (DELAY)) ;
as se r t property (! STALL) ;

This is valid

Ex. Bus ACKs

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

274 / 462

Cannot ACK or ERR when no request is pending

as se r t property (@ (posedge i_clk)
((! i_CYC) | | (i_reset))
##1 ((! i_CYC) | | (i_reset))
|´> ((! o_ACK)&&(!o_ERR)) ;

Or as we did it before

always @ (posedge i_clk)
i f ((f_past_valid)

&&(($past (i_reset)) | | (! $past (i_CYC)))
&&((i_reset) | | (! i_CYC))
as se r t ((! o_ACK)&&(!o_ERR)) ;

Which is simpler to understand?

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

275 / 462

Let’s look at an serial port transmitter example.
A baud interval is CKS clocks . . .

˝ Output data is constant
˝ Logic doesn’t change state
˝ Internal shift register value is known
˝ Ends with zero_baud_counter

sequence BAUD_INTERVAL (CKS , DAT , SR , ST) ;
((o_uart_tx == DAT)&&(state == ST)

&&(lcl_data == SR)
&&(!zero_baud_counter)) [∗ (CKS´1)]

##1 (o_uart_tx == DAT)&&(state == ST)
&&(lcl_data == SR)
&&(zero_baud_counter))

endsequence

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

276 / 462

A byte consists of 10 Baud intervals

sequence SEND (CKS , DATA) ;
BAUD_INTERVAL (CKS , 1 ’b0 , DATA , 4 ’h0)
##1 BAUD_INTERVAL (CKS , DATA [0] ,

{{ (1){1 ’ b1 }} , DATA [7 : 1] } , 4 ’h1)
##1 BAUD_INTERVAL (CKS , DATA [1] ,

{{ (2){1 ’ b1 }} , DATA [7 : 2] } , 4 ’h2)
//
##1 BAUD_INTERVAL (CKS , DATA [6] ,

{{ (7){1 ’ b1 }} , DATA [7] } , 4 ’h7)
##1 BAUD_INTERVAL (CKS , DATA [7] ,

{ 7 ’h7f , DATA [7] } , 4 ’h8)
##1 BAUD_INTERVAL (CKS , 1 ’b1 , 8 ’hff , 4 ’h9) ;

endsequence

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

277 / 462

Transmitting a byte requires

always @ (posedge i_clk)
i f ((i_wr)&&(!o_busy))

fsv_data <= i_data ;

as se r t property (@ (posedge i_clk)
(i_wr)&&(!o_busy)
|=> ((o_busy) throughout

SEND (CLOCKS_PER_BAUD , fsv_data))
##1 ((! o_busy)&&(o_uart_tx)

&&(zero_baud_counter)) ;

˝ A transmit request is received
˝ The data is sent
˝ The controller returns to idle

Ex. UART Tx

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

278 / 462

Transmitting a byte requires

as se r t property (@ (posedge i_clk)
(i_wr)&&(!o_busy)
|=> ((o_busy) throughout

SEND (CLOCKS_PER_BAUD , fsv_data))
##1 ((! o_busy)&&(o_uart_tx)

&&(zero_baud_counter)) ;

Make sure . . .

˝ The sequence has a defined beginning
Only ever triggered once at a time

˝ Doesn’t reference changing data
˝ throughout is within parenthesis
˝ You tie all relevant state information together

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

279 / 462

Using SystemVerilog Assertions with Yosys requires Verific

[opt ions]
mode prove

[engines]
smtbmc
[s c r i p t]
#
#
read ´formal module . v
. . . o t h e r f i l e s would go he r e
prep ´top module

opt_merge ´share_all

[f i l e s]
. . / demo´rtl/module . v

SymbiYosys

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

279 / 462

Using SystemVerilog Assertions with Yosys requires Verific

[opt ions]
mode prove

[engines]
smtbmc
[s c r i p t]
The read command works both with and without Verific
SymbiYosys script doesn’t change therefore
read ´formal module . v
. . . o t h e r f i l e s would go he r e
prep ´top module

opt_merge ´share_all

[f i l e s]
. . / demo´rtl/module . v

SysVerilog Conclusions

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

280 / 462

SystemVerilog Concurrent Assertions . . .

˝ can be very powerful
˝ can be very confusing
˝ can be used with immediate assertions

You can keep using the simpler property form we’ve been
using

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

281 / 462

Let’s formally verify a synchronous FIFO

module sfifo (i_clk , i_reset ,
i_wr , i_data , o_full ,
i_rd , o_data , o_empty ,
o_err) ;

// . . .
‘ i f d e f FORMAL

// P r o p e r t i e s unde r s tood by e i t h e r
// Yosys or V e r i f i c
//

‘ e nd i f
‘ i f d e f VERIFIC_SVA

// V e r i f i c ´on l y p r o p e r t i e s
//

‘ e nd i f
endmodule

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

282 / 462

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

282 / 462

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

282 / 462

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

282 / 462

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

282 / 462

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
˝ The two outputs, o_empty and o_full, should properly reflect

the size of the FIFO

– o_empty means the FIFO is currently empty
– o_full means the FIFO has 2N elements within it

Last Exercise

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

282 / 462

Let’s formally verify a synchronous FIFO
What properties do you think would be appropriate?

˝ Should never go from full to empty except on a reset
˝ Should never go from empty to full
˝ The two outputs, o_empty and o_full, should properly reflect

the size of the FIFO

– o_empty means the FIFO is currently empty
– o_full means the FIFO has 2N elements within it

˝ Challenge: Use sequences to prove that

– Given any two values written successfully
– Verify that those two values can (some time later) be read

successfully, and in the right order
(Unless a reset takes place in the meantime)

Hint

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

283 / 462

When using sequences,. . .

˝ It can be very difficult to figure out what part of the
sequence failed.
The assertion that fails will reference the entire failing
sequence.

Suggestions:

˝ Sequences must be triggered
Be aware of what triggers a sequence

˝ Use combinational logic to define wires that will then
represent steps in the sequence

˝ Build the sequences out of these wires

Hint continued

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Ź Sequences

Questions?

Quizzes

284 / 462

Here’s an example:

wire f_a , f_b , f_c ;
//
ass ign f_a = // your l o g i c
ass ign f_b = // your l o g i c
ass ign f_c = // your l o g i c
//
sequence ARBITRARY_EXAMPLE_SEQUENCE

f_a [∗ 0 : 4] ##1 f_b ##1 f_c [∗ 1 2 : 1 6] ;
endsequence

If you use this approach

˝ Interpreting the wave file will be much easier
˝ The f_a, etc., lines will be in the trace

Questions?

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Overview

Clocking

Bind

Sequences

Ź Questions?

Quizzes

285 / 462

Quizzes

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Ź Quizzes

286 / 462

Quiz #1

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

287 / 462

Will the assertion below ever fail?

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)

counter <= counter + 1 ’b1 ;

always @ (∗)
begin

as se r t (counter <= 100) ;
assume (counter <= 90) ;

end

Answer #1

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

288 / 462

No, it will never fail.
The assumption will prohibit the assertion from being evaluated.

always @ (∗)
begin

as se r t (counter <= 100) ;
assume (counter <= 90) ;

end

This is an example of what I call a careless asumption.

Quiz #2

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

289 / 462

Will this simple counter ever pass formal verification?

parameter [1 5 : 0] MAX_AMOUNT = 22 ;
reg [1 5 : 0] counter ;

always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= MAX_AMOUNT´1’b1 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ;

always @ (∗)
o_busy = (counter != 0) ;

‘ i f d e f FORMAL

always @ (∗)
as se r t (counter < MAX_AMOUNT) ;

‘ e nd i f

Answer #2

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

290 / 462

This design just needs an initial counter value to pass

parameter [1 5 : 0] MAX_AMOUNT = 22 ;
reg [1 5 : 0] counter = 0 ;

always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= MAX_AMOUNT´1’b1 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ;

always @ (∗)
o_busy = (counter != 0) ;

‘ i f d e f FORMAL

always @ (∗)
as se r t (counter < MAX_AMOUNT) ;

‘ e nd i f

Quiz #3

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

291 / 462

Will the following design pass formal verification?

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)
i f (counter == 16 ’ d22)

counter <= 0 ;
e l s e

counter <= counter + 1 ’b1 ;

always @ (∗)
as se r t (counter != 16 ’ d500) ;

Answer #3

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

292 / 462

The following approach will pass both BMC and induction.

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f (i_reset) // Keep ASIC d e s i g n e r s happy

counter <= 0 ;
e l s e i f (counter == 16 ’ d22)

counter <= 0 ;
e l s e

counter <= counter + 1 ’b1 ;

// The c o r r e c t a s s e r t i o n shou l d r e f e r e n c e
// a l l o f the un r e a chab l e coun t e r v a l u e s
always @ (∗)

as se r t (counter <= 16 ’ d22) ;

Quiz #4

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

293 / 462

Will the following design pass formal verification?

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= 23 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ’b1 ;

always @ (∗)
as se r t (counter < 24) ;

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge i_clk)
as se r t ($past (counter == 0)) ;

Answer #4

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

294 / 462

If you replace assert($past(counter==0)); with
assert(counter==0);, then this design passes.

i n i t i a l counter = 0 ;
always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= 23 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ’b1 ;

always @ (∗)
as se r t (counter < 24) ;

always @ (∗)
assume (! i_start_signal) ;

always @ (posedge i_clk)
as se r t (counter == 0) ;

Quiz #5

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

295 / 462

How are the following two assertions different?

i n i t i a l f_past_valid = 1 ’b0 ;
always @ (posedge i_clk)

f_past_valid <= 1 ’b1 ;

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (o_wb_stb))

&&($past (i_wb_stall)))
as se r t ((o_wb_stb)

&&($stab le ({ i_wb_addr , i_wb_we }))) ;

as se r t property (@ (posedge i_clk)
(o_wb_stb)&&(i_wb_stall)
|=> o_wb_stb

&&($stab le ({ i_wb_addr , i_wb_we }))) ;

Answer #5

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

296 / 462

˝ The first assertion was an “immediate” assertion, the second
a “concurrent assertion”.

˝ While the Symbiotic EDA Suite supports both assertions, the
free version of Yosys only supports immediate assertions

˝ The second assertion is more compact, and perhaps even
easier to read

as se r t property (@ (posedge i_clk)
(o_wb_stb)&&(i_wb_stall)
|=> o_wb_stb

&&($stab le ({ i_wb_addr , i_wb_we }))) ;

Functionally, the two assertions are identical!

Quiz #6

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

297 / 462

When using multiclock techniques, which of the below
descriptions describes a signal that only changes on the positive
edge of a clock?

(∗ gclk ∗) reg gbl_clk ;
always @ (posedge gbl_clk)
i f ($ f e l l (i_clk))

as se r t ($stab le (signal)) ;

always @ (posedge gbl_clk)
i f (! $rose (i_clk))

as se r t ($stab le (signal)) ;

always @ (posedge gbl_clk)
i f (! $past (i_clk))

as se r t ($stab le (signal)) ;

Answer #6

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

298 / 462

The correct way to assert that a signal will only change on a
positive clock edge requires asserting that the signal will be
stable in all other cases.

always @ (posedge gbl_clk)
i f ((f_past_valid_gbl)&&(! $rose (i_clk)))

as se r t ($stab le (signal)) ;

Be aware, $rose() depends upon the $past(), so don’t forget an
f_past_valid signal!
With (∗ gclk ∗), I like to call it f_past_valid_gbl, and define it
as,

reg f_past_valid_gbl = 1 ’b0 ;
always @ (posedge gbl_clk)

f_past_valid_gbl <= 1 ’b1 ;

Quiz #7

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

299 / 462

Will this simple counter ever pass formal verification?

reg [1 5 : 0] counter = 0 ;

always @ (posedge i_clk)
i f ((i_start_signal)&&(counter == 0))

counter <= 21 ;
e l s e i f (counter != 0)

counter <= counter ´ 1 ;

always @ (∗)
o_busy = (counter != 0) ;

always @ (posedge i_clk)
i f ($past (i_start_signal))

as se r t (counter == 21) ;

Answer #7

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

300 / 462

No, the assertion would not pass: it neither checked for the past
counter == 0, nor did it make sure $past() was valid.
The modified assertion, below, will pass.

always @ (posedge i_clk)
i f ((f_past_valid)

&&($past (i_start_signal))
&&($past (counter) == 0))
as se r t (counter == 21) ;

Alternatively, the following concurrent assertion would also work:

as se r t property @ (posedge i_clk)
(i_start_signal)&&(counter == 0)
|=> (counter == 21) ;

This exercise is a good example of how formal methods force you
to look just a little harder at a problem.

Quiz #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

301 / 462

Will this design pass a Bounded Model Check (BMC)?

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)

counter <= counter + 1 ’b1 ;

always @ (∗)
as se r t (counter < 16 ’ d65000) ;

Answer #8

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

302 / 462

Will this design pass a Bounded Model Check (BMC)?

reg [1 5 : 0] counter ;

i n i t i a l counter = 0 ;
always @ (posedge clk)

counter <= counter + 1 ’b1 ;

always @ (∗)
as se r t (counter < 16 ’ d65000) ;

Not unless you prove it with a depth of over 65,000!
This is a classic example of a proof that is easier to do with
induction. Less than five steps of induction would find this
problem.

Quiz #9

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

303 / 462

Will the following design pass formal verification?

reg [1 5 : 0] counter ;

always @ (∗)
begin

counter = 2 ;
as se r t (counter == 5) ;
counter = counter + 3 ;

end

Answer #9

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

304 / 462

Will the following design pass formal verification?

always @ (∗)
begin

counter = 2 ;
as se r t (counter == 5) ;
counter = counter + 3 ;

end

No, it will not pass.

˝ counter = 2 is a blocking statement. It is completed before
the assert().

˝ counter==2 when the assert is applied
˝ Only after the assert is counter set to 5.
˝ Were the assert the last line of the block, it would’ve passed
˝ This is one reason why I separate my assertions from my logic

Quiz #10

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

305 / 462

Goal: to prove that whenever a request is being made, the
request will stay stable until it is accepted.
Will this assertion capture what we want?

i f (($past (o_REQUEST))&&($past (i_STALL)))
begin

as se r t (o_REQUEST) ;
as se r t ($stab le (o_REQUEST_DETAILS)) ;

end

Answer #10

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

306 / 462

Not quite, there’s a couple of things missing
Two examples would be i_reset and f_past_valid

Here’s an updated assertion that should fix those lacks

i f ((f_past_valid)&&(!$past (i_reset))
&&($past (o_REQUEST))&&($past (i_STALL)))

begin
as se r t (o_REQUEST) ;
as se r t ($stab le (o_REQUEST_DETAILS)) ;

end

Alternatively, we could have written,

as se r t property @ (posedge i_clk)
d i sab l e iff (i_reset)
(o_REQUEST)&&(i_STALL)
|=> (o_REQUEST)

&&($stab le (o_REQUEST_DETAILS)) ;

Quiz #11

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

307 / 462

The following design fails induction. How would you adjust it so
that it would pass?

reg [1 5 : 0] sa = 0 , sb = 0 ;

always @ (posedge i_clk)
i f (i_ce)
begin

sa <= { sa [1 4 : 0] , i_bit } ;
sb <= { i_bit , sb [1 5 : 1] } ;

end

always @ (∗)
as se r t (sa [1 5] == sb [0]) ;

Answer #11

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

308 / 462

There are many solutions to this problem

1. Use a non-smtbmc engine, such as abc pdr

2. Force i_ce

always @ (posedge i_clk)
i f (! $past (i_ce))

assume (i_ce) ;

3. Assert all bits

always @ (∗)
begin

as se r t (sa [1 4] == sb [1]) ;
as se r t (sa [1 3] == sb [2]) ;
as se r t (sa [1 2] == sb [3]) ;
as se r t (sa [1 1] == sb [4]) ;
// . . . th rough a l l c omb ina t i on s

Quiz #12

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

309 / 462

The logic below is designed to ensure that the design will only
acknowledge requests and nothing more: one acknowledgment
per request. It almost works. Can you spot any problem(s)?

i n i t i a l f_nreqs = 0 ;
always @ (posedge i_clk)
i f ((i_reset) | | (! i_wb_cyc))

f_nreqs <= 1 ’b0 ;
e l s e i f ((i_wb_stb)&&(!o_wb_stall))

f_nreqs <= f_nreqs + 1 ’b1 ;
// f n a c k i s a s i m i l a r l y d e f i n e d counte r ,
// on l y one tha t count s acknowledgments
always @ (∗)
i f (f_nreqs == f_nacks)

as se r t (! o_wb_ack) ;

Assume a sufficient number of bits in f_nreqs and f_nacks.

Answer #12

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

310 / 462

No, it will not pass. The problem is that it may be possible to
ACK a request on the same clock it is received. The following
updated assertion will fix this.

always @ (∗)
i f ((f_nreqs == f_nacks)

&&((!i_wb_stb) | | (o_wb_stall)))
as se r t (! o_wb_ack) ;

Originally, I disallowed ACK’s on the same clock as the STB.
Then I tried formally verifying someone else’s design. When it
didn’t pass, I went back and re-read the WB-spec only to
discover the error in my ways.

Quiz #13

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

311 / 462

Given that X is defined somehow, which of the following
assertions will fail?

always @ (posedge i_clk)
i f (f_past_valid)
begin

as se r t ($stab le (X)
== (X == $past (X))) ;

as se r t ($changed (X)
== (X != $past (X))) ;

as se r t ($rose (X)
== ((X)&&(!$past (X)))) ;

as se r t ($ f e l l (X)
== ((! X)&&($past (X)))) ;

end

Answer #13

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

312 / 462

Two of these assertions will fail if X is wider than one bit

as se r t ($rose (X) == ((X)&&(!$past (X)))) ;
as se r t ($ f e l l (X) == ((! X)&&($past (X)))) ;

From the 2012 SystemVerilog standard,

These updated assertions will succeed,

as se r t ($rose (X) == ((X [0])&&(! $past (X [0])))) ;
as se r t ($ f e l l (X) == ((! X [0])&&($past (X [0])))) ;

Quiz #14

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

313 / 462

The following logic creates two clocks with nearly identical
frequencies. Can you spot any missing assumptions?

(∗ gclk ∗) reg gbl_clk ;
(∗ anyconst ∗) reg [7 : 0] f_step_one , f_step_two ;
always @ (∗)
i f (f_step_one > f_step_two)

assume (f_step_one ´ f_step_two < 8 ’h2) ;
e l s e

assume (f_step_two ´ f_step_one < 8 ’h2) ;
always @ (posedge gbl_clk) begin

f_counter_one <= f_counter_one + f_step_one ;
f_counter_two <= f_counter_two + f_step_two ;
//
assume (i_clk_one == f_counter_one [7]) ;
assume (i_clk_two == f_counter_two [7]) ;

end

Answer #14

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

314 / 462

The step sizes cannot ever be zero, and steps greater than 8’h80

will alias.

always @ (∗)
begin

assume (f_step_one != 0) ;
assume (f_step_two != 0) ;
assume (f_step_one <= 8 ’ h80) ;
assume (f_step_two <= 8 ’ h80) ;

end

For performance reasons, you may choose to assume the speed
of the fastest clock.

always @ (∗)
assume ((f_step_one == 8 ’ h80)

| | (f_step_two == 8 ’ h80)) ;

Quiz #15

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

315 / 462

Will the following assertion pass?

always @ (posedge i_clk)
begin

i f (i_write)
mem [i_waddr] <= i_data ;

i f (i_read)
o_data <= mem [i_raddr] ;

end

always @ (posedge i_clk)
i f ((f_past_valid)

&&($past (i_write))&&($past (i_read))
&&($past (i_waddr)==$past (i_raddr)))

as se r t (o_data == $past (i_data)) ;

Answer #15

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

316 / 462

Will the following assertion pass?

always @ (posedge i_clk)
begin

i f (i_write)
mem [i_waddr] <= i_data ;

i f (i_read)
o_data <= mem [i_raddr] ;

end

always @ (posedge i_clk)
i f ((f_past_valid)

&&($past (i_write))&&($past (i_read))
&&($past (i_waddr)==$past (i_raddr)))

as se r t (o_data == $past (i_data)) ;

No.
How would you describe a write–through block RAM?

Quiz #16

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

317 / 462

The formal property below was written for the case of a
synchronous reset. How would you adjust it so that it accurately
reflects the behavior of the flip-flop under an asynchronous reset?

always @ (posedge i_clk , negedge i_areset_n)
i f (! i_areset_n)

a <= 0 ;
e l s e

a <= something ;

always @ (posedge i_clk)
i f ((f_past_valid)&&($past (i_areset_n))

as se r t (a == $past (something)) ;

Answer #16

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

318 / 462

The following assertion can be used to describe the response of
logic to a negative logic asynchronous reset.

always @ (posedge i_clk , negedge i_areset_n)
i f (! i_areset_n)

a <= 0 ;
e l s e

a <= something ;

always @ (posedge i_clk)
i f (! i_areset_n)

as se r t (a == 0) ;
e l s e i f ((f_past_valid)&&($past (i_areset_n))

as se r t (a == $past (something)) ;

Don’t forget to assume an initial reset!

i n i t i a l assume (! i_areset_n) ;

Quiz #17

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

319 / 462

Your design passes a bounded model check (BMC), but fails
during induction. Upon inspection, you find a failure in section A
(below) of your trace.

How should you address this problem?

Answer #17

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

320 / 462

Your design passes a bounded model check (BMC), but fails
during induction. Upon inspection, you find a failure in section A
(below) of your trace.

How should you address this problem?
This is not a problem with your logic. Rather, the formal
properties that are constraining your logic are insufficient

˝ You need more properties to keep the design from failing
˝ If an input is out of bounds, assume it will be within bounds
˝ If your design starts in an invalid state, assert such invalid

states will never happen
˝ initial statements will not help during induction

Quiz #18

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

321 / 462

Your design fails in section C (below) of your trace.

Upon inspection, you discover an
always @(posedge i_clk) assume(X); property is not getting
applied.
How would you fix this situation?

Answer #18

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

322 / 462

An always @(posedge i_clk) assume(X); property is not getting
applied, causing your design to fail in section C of your trace

The problem is that always @(posedge i_clk) properties are not
applied until the the next clock edge (i.e. section B of the trace)

˝ This can cause an always @(∗) assert(Y); to fail in section C

How would you fix this situation?

˝ You can make the always @(∗) property a clocked property
˝ You can evaluate the always @(posedge i_clk) assumption as

an always @(∗) assumption instead

– You might need to create your own $past value to do this

Quiz #19

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

323 / 462

Will the following design pass formal verification?

reg [1 5 : 0] counter = 0 ;
always @ (posedge i_clk)
i f (i_reset)

counter <= 0 ;
e l s e

counter <= counter + 1 ;

always @ (∗)
i f (counter > 2)

assume (i_reset) ;

as se r t property (@ (posedge i_clk)
d i sab l e iff (i_reset)
(counter < 2)) ;

Answer #19

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

324 / 462

Much to my own surprise, this design will pass a formal check.

This is roughly equivalent to:

reg check = 1 ;
always @ (posedge i_clk)

check <= (counter < 2) | | (i_reset) ;
always @ (∗)

i f (! i_reset) as se r t (check) ;

Quiz #20

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

325 / 462

Consider the following trace from an asynchronous context:

i clk

f past valid

o value

Will this formal stability assertion pass or fail?

always @ (posedge i_clk)
i f (f_past_valid)

as se r t ($stab le (o_value)) ;

Answer #20

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

326 / 462

Yes, this stability assertion will hold.

i clk

f past valid

o value

˝ Note that everytime $rose(i_clk) is true, $past(o_value) is
also true.

˝ Since the check is only accomplished on the positive edge of
i_clk, o_value is only checked at this time.

˝ Since $past(o_value) is always true just prior to
@(posedge i_clk), the assertion passes

always @ (posedge i_clk)
i f (f_past_valid)

as se r t ($stab le (o_value)) ;

Quiz #21

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

327 / 462

Your design contains the following generate block:

parameter [0 : 0] A = 1 ;
parameter [0 : 0] B = 1 ;
// . . .
generate i f (A)
begin : A_BLOCK

// Some l o g i c
end e l s e i f (B)
begin : B_BLOCK

// Some o th e r l o g i c
end e l s e begin : ELSE_BLOCK

// Some f i n a l s e t o f l o g i c
end endgenerate

How should this impact the design of your SymbiYosys
configuration file?

Answer #21

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

328 / 462

How should conditional generate blocks be handled?

˝ By creating a separate task for each parameter set
˝ Each set of parameters can then be verified independently

[tasks]
A

B

Other

[s c r i p t]
read ´formal toplvl . v
´́ pycode´begin´́
cmd=” h i e r a r c h y ´top t o p l v l ”
cmd+=” ´chparam A %d” % (1 if ”A” in tags else 0)
cmd+=” ´chparam B %d” % (1 if ”B” in tags else 0)
output (cmd)
´́ pycode´end´́
prep ´top toplvl

Quiz #22

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

329 / 462

When working with cover(), how do you handle a failure?

˝ On a cover() success a trace is generated.
No trace is generated on a cover() failure.

˝ At first glance, you have nothing to go with

How do you debug your design in this situation?

Answer #22

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

330 / 462

When working with cover(), how do you handle a failure?

˝ Suppose your design needs to accomplish a sequence of steps,
and then cover the last one.

always @ (∗)
cover (step_24) ;

˝ How shall you debug this failure?

Solution: cover the intermediate steps

always @ (∗)
begin

cover (step_01) ;
// . . .
cover (step_23) ;

end

This will lead you to the failing clock cycle

Quiz #23

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

331 / 462

Consider the following design:

input wire [3 1 : 0] i_v ;
output wire o_v ;

ass ign o_v = (i_v == 32 ’ hdeadbeef) ;

always @ (∗)
as se r t (i_v != 32 ’ hdeadbeef) ;

always @ (∗)
assume (! o_v) ;

Given that the solver can pick any value for i_v, will the
assertion ever fail?

Answer #23

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

332 / 462

Consider the following design:

ass ign o_v = (i_v == 32 ’ hdeadbeef) ;
always @ (∗)

as se r t (i_v != 32 ’ hdeadbeef) ;
always @ (∗)

assume (! o_v) ;

˝ The assumption is forced to be true before evaluating any
assertions

˝ !o_v will only ever be true if i_v != 32’hdeadbeef

˝ Therefore, the solver will never even consider the case where
i_v == 32’hdeadbeef

˝ The assertion can never fail

Quiz #24

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

333 / 462

Consider the following trace from an AXI read interaction:

S AXI ACLK

S AXI ARESETN

S AXI ARVALID

S AXI ARID

S AXI RVALID

S AXI RID

˝ Assume all of the relevant xREADY lines are high

Can you spot the bug?

Answer #24

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

334 / 462

Can you spot the bug?

S AXI ACLK

S AXI ARESETN

S AXI ARVALID

S AXI ARID

S AXI RVALID

S AXI RID

The request response has the wrong ID

˝ Request was made for ID=1, response has ID=0
˝ The cause? Xilinx’s example core doesn’t register the ID

The trace above was found by applying the Symbiotic EDA Suite
to Xilinx’s example AXI4 core

Quiz #25

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

335 / 462

Consider the following trace from an AXI write interaction,
ending in a steady state

S AXI ACLK

S AXI ARESETN

S AXI AWVALID

S AXI AWREADY

S AXI WVALID

S AXI WREADY

S AXI WLAST

S AXI BVALID

S AXI BREADY

What sort of formal property would catch this bug?

Answer #25

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

336 / 462

A transaction timeout can find this bug

always @ (posedge i_clk)
i f ((! i_axi_reset_n) | | (! i_axi_awvalid)

| | (i_axi_awready)
| | (f_axi_wr_pending > 0))

f_axi_awstall <= 0 ;
e l s e i f ((! i_axi_bvalid) | | (i_axi_bready))

f_axi_awstall <= f_axi_awstall + 1 ’b1 ;

always @ (∗)
as se r t (f_axi_awstall < F_AXI_MAXWAIT) ;

where f_axi_wr_pending is a reference to the number of
remaining write data transactions in this burst
The bug in this question was found by applying the Symbiotic
EDA Suite to Xilinx’s example AXI4 core

Answer #25b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

337 / 462

Oops, the last timeout logic captured when the incoming write
address channel was stalled, not the delay on the write response
channel.

˝ Here’s the timeout logic that actually found this bug.

always @ (posedge i_clk)
i f ((! i_reset_n) | | (i_bvalid) | | (i_wvalid)

| | ((f_awr_nbursts == 1)
&&(f_wr_pending>0))

| | (f_awr_nbursts == 0))
f_awr_ack_delay <= 0 ;

e l s e
f_awr_ack_delay <= f_awr_ack_delay + 1 ’b1 ;

always @ (posedge i_clk)
as se r t (f_awr_ack_delay < F_AXI_MAXDELAY) ;

Quiz #26

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

338 / 462

Consider the following trace drawn from an AXI interconnect I
had the opportunity to verify. It had never seen a formal check
before.

S AXI ACLK

S AXI ARESETN

S AXI AWVALID

S AXI AWLEN 3

S AXI WVALID

S AXI WLAST

S AXI BVALID

Assume all ∗READY signals are true
Can anyone see the bug? What formal property would catch this
bug?

Answer #26

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

339 / 462

Correctly identifying the bug is important, otherwise you’ll “fix”
the wrong “bug”

S AXI ACLK

S AXI ARESETN

S AXI AWVALID

S AXI AWLEN 3

S AXI WVALID

S AXI WLAST

S AXI BVALID

In this case, there is no missing S_AXI_WLAST signal. According
to spec, the burst is S_AXI_AWLEN+1 beats long, so there’s still a
missing write beat. The bus master just hasn’t sent the final
beat yet.

Answer #26b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

340 / 462

The bug? You can’t return a BVALID response until the first
write burst has completed.
To verify this, you need to count items remaining in the burst, I
use f_wr_pending, as well as the number of bursts outstanding,
something I call f_awr_nbursts. You can then check,

always @ (∗)
i f (f_awr_nbursts == 0)

// I f t h e r e a r e no b u r s t s ou t s t a nd i n g
// then no BVALID can be r e t u r n e d
as se r t (! S_AXI_BVALID) ;

e l s e i f (f_awr_nbursts == 1)
// I f the w r i t e channe l i s s t i l l s e nd i ng
// data , then the BVALID cannot (y e t) be
// r e t u r n e d .
as se r t ((f_wr_pending == 0)

| | ! S_AXI_BVALID) ;

Quiz #27

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

341 / 462

Can you explain why the following cover statement fails?

reg read_counter ;
i n i t i a l read_counter = 0 ;
always @ (posedge i_clk)
i f (i_reset)

read_counter <= 0 ;
e l s e i f (some_event)

read_counter <= read_counter + 1 ;

always @ (∗)
cover (read_counter > 4) ;

Answer #27

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

342 / 462

Can you explain why the following cover statement fails?

reg read_counter ;
i n i t i a l read_counter = 0 ;
always @ (posedge i_clk)
i f (i_reset)

read_counter <= 0 ;
e l s e i f (some_event)

read_counter <= read_counter + 1 ;

always @ (∗)
cover (read_counter > 4) ;

Did you notice the number of bits in the read_counter? At only
one bit, read_counter can never be more than one.

Quiz #28

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

343 / 462

Let NM be the number of masters, and NS the number of slaves.
You want to cover a full set of write grants.

reg cvr_property ;
always @ (∗)
begin

cvr_property = 1 ;
f o r (iN=0; iN < (NM > NS) ? NS : NM ; iN=iN+1)
i f (! write_grant [iN])

cvr_property = 0 ;
end

always @ (∗)
cover (cvr_property) ;

Much to my surprise, yosys ran out of memory while elaborating
this design.
Can anyone see why?

Answer #28

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

344 / 462

This is an order of operations issue. The example design is
equivalent to

always @ (∗)
begin

cvr_property = 1 ;
f o r (iN=0; (iN < (NM > NS)) ? NS : NM ;

iN=iN+1)
i f (! write_grant [iN])

cvr_property = 0 ;
end

The end condition will therefore elaborate to either NM or NS,
both of which are non-zero and therefore “true”.
As for the out-of-memory error, remember this is hardware.
Yosys is elaborating new hardware circuits every time through
the loop, and the loop doesn’t have an end.

Quiz #29

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

345 / 462

There are three steps required to verify an AXI-lite interface:

1. First, attach the formal interface property file

‘ i f d e f FORMAL

faxil_slave #(
. C_AXI_ADDR_WIDTH (C_S_AXI_ADDR_WIDTH))

properties (
. i_clk (S_AXI_ACLK) ,
. i_axi_reset_n (S_AXI_ARESETN) ,
// . . .

2. If using SymbiYosys, you’ll also need to create an SBY file

What’s the missing step that’s required to formally verify an
AXI-lite slave interface matches bus requirements for all time?

https://github.com/ZipCPU/wb2axip/blob/master/bench/formal/faxil_slave.v
https://github.com/ZipCPU/wb2axip/blob/master/bench/formal/demoaxi.sby

Answer #29

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

346 / 462

3. Reference the state information from the property file,

‘ i f d e f FORMAL

faxil_slave #(/∗ . . . ∗/)
properties (// . . .

. f_axi_rd_outstanding (rd_inproc) ,
// . . .

and use it to assert() that the state maches your logic

always @ (∗)
as se r t (rd_inproc == (axi_rvalid ? 1 : 0)

+(axi_arready ? 0 : 1)) ;
// . . .

The example above is from one of my own designs, as this step
can be very design dependent.

https://github.com/ZipCPU/wb2axip/blob/master/rtl/demoaxi.v

Quiz #30

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

347 / 462

The following illustrates a common FIFO mistake

always @ (posedge i_clk)
i f (i_reset)

{ rd_addr , wr_addr } <= 0 ;
e l s e i f (i_rd)

rd_addr <= rd_addr + 1 ;
e l s e i f (i_wr)

wr_addr <= wr_addr + 1 ;

Can you identify the bug, and suggest a way of fixing it?

Answer #30

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

348 / 462

The first bug is not setting the pointers initially

i n i t i a l {rd_addr , wr_addr } = 0 ;

The next bug is not checking for underflow or overflow

always @ (posedge i_clk)
i f (i_reset)

{ rd_addr , wr_addr } <= 0 ;
e l s e i f (i_rd && ! o_empty)

rd_addr <= rd_addr + 1 ;
e l s e i f (i_wr && ! o_full)

wr_addr <= wr_addr + 1 ;

That leaves at least one more bug

Answer #30b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

349 / 462

The real problem is that the whole structure is wrong.

˝ This really needs ot be handled in either two logic blocks, or
˝ Using a case statement, as shown below

i n i t i a l {rd_addr , wr_addr } = 0 ;
always @ (posedge i_clk)
i f (i_reset)

{ rd_addr , wr_addr } <= 0 ;
e l s e case ({ i_rd & ! o_empty , i_wr && ! o_full })
2 ’ b10 : rd_addr <= rd_addr + 1 ;
2 ’ b01 : wr_addr <= wr_addr + 1 ;
2 ’ b11 : begin

rd_addr <= rd_addr + 1 ;
wr_addr <= wr_addr + 1 ;
end

endcase

Quiz #31

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

350 / 462

The following proof passes.

reg f_past_valid = 0 ;
always @ (posedge i_clk)

f_past_valid <= 1 ;

always @ (∗)
i f (f_past_valid)

assume (i_reset) ;

always @ (posedge i_clk)
counter <= really_complex_logic ;

always @ (∗)
i f (f_past_valid && ! i_reset)

as se r t (counter == counter + 1) ;

Can you spot the bug?

Answer #31

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

351 / 462

Did you notice the assumption that i_reset is held high?

always @ (∗)
i f (f_past_valid)

assume (i_reset) ;

The assertion never got checked!

always @ (∗)
i f (f_past_valid && ! i_reset)

as se r t (counter == counter + 1) ;

A basic cover test would find this problem

always @ (∗)
cover (f_past_valid && ! i_reset) ;

// or even
always @ (posedge i_clk)

cover (counter == $past (counter + 1)) ;

Quiz #32

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

352 / 462

How would you verify the o_empty and o_full properties of a
FIFO, given the read and write addresses?

˝ The o_empty flag

ass ign fill = wr_addr ´ rd_addr ;
always @ (∗)
begin

as se r t (o_empty == (fill == 0)) ;

˝ The o_full flag, given a FIFO with FIFO_SIZE elements

as se r t (o_full == (fill >= FIFO_SIZE)) ;
// . . .

end

What property is missing?

Answer #32

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

353 / 462

The missing property?

˝ We checked the o_empty flag
˝ We checked the o_full flag
˝ Don’t forget to check that the fill never exceeds the capacity

of the FIFO

as se r t (fill <= FIFO_SIZE) ;

Checking the data content of the FIFO still requires the twin
write followed by twin read test. You can read more about that
in my on-line tutorial.

http://zipcpu.com/tutorial

Quiz #33

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

354 / 462

Formally verifying a cache requires three properties

First, let the solver to pick an arbitrary address and value

(∗ anyconst ∗) reg [AW´1:0] f_const_addr ;
(∗ anyconst ∗) reg [DW´1:0] f_const_data ;

1. Then when the bus returns a value for the given address,
assume the known value.

i f (i_wb_ack && ackd_address == f_const_addr)
assume (i_wb_data == f_const_data) ;

2. Whenever the cache returns the value for the special
address, assert that the known value is returned

i f (o_valid && o_address == f_const_addr)
as se r t (o_value == f_const_data) ;

3. What’s missing?

Answer #33

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

355 / 462

Formally verifying a cache requires three properties

First, allow the solver to pick an arbitrary address, and an
arbitrary data word at that address.

1. assume a known bus response from the given address
2. assert that same response from the cache when that same

address is requested

The missing property?

3. Assert that, if the known address is validly within the cache,
that the value associated with that address matches the
solver chosen value

always @ (∗)
i f (cache_valid [f_const_addr])

as se r t (cache [f_const_addr [CW´1 : 0]]
== f_const_data) ;

Quiz #34

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

356 / 462

The following design illustrates a common AXI coding mistake:

always @ (posedge S_AXI_ACLK)
i f (! S_AXI_ARESETN)

// Do someth ing
e l s e i f (S_AXI_AWVALID && S_AXI_AWREADY

&& something_else)
// Wri te l o g i c

e l s e i f (S_AXI_BREADY)
// Las t c o n d i t i o n
//

Can you identify the bug, and suggest one or two fixes?

Answer #34

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

357 / 462

The following design illustrates a common AXI coding mistake:

always @ (posedge S_AXI_ACLK)
// . . .
i f (S_AXI_AWVALID && S_AXI_AWREADY

&& something_else)
// . . .

The mistake? Checking for something_else when processing
information from the bus. To fix it,

1. Adjust the logic for S_AXI_AWREADY
2. Prove that every time something_else is false, then

S_AXI_AWREADY is will also be false

as se r t property (@ (posedge S_AXI_ACLK)
! something_else |´> ! S_AXI_AWREADY) ;

Quiz #35

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

358 / 462

Will the following logic pass formal verification?

reg [1 5 : 0] counter , last ;

i n i t i a l counter = 1 ;
i n i t i a l last = 0 ;

always @ (posedge i_clk)
begin

counter <= counter + 1 ;
last <= counter ;

end

always @ (∗)
as se r t (last + 1 == counter) ;

Answer #35

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

359 / 462

The problem is that last+1 is a 32-bit value, whereas counter is
a 16-bit unsigned value. This assertion will always fail when
counter rolls over.

i clk

counter 16’hfffd 16’hfffe 16’hffff 16’h0000

last 16’hfffc 16’hfffd 16’hfffe 16’hffff

last`1 32’h0fffd 32’hfffe 32’h0ffff 32’h10000

failing timestep

If you map last+1 to a 16-bit value, the assetion will pass

wire [1 5 : 0] last_plus_one = last + 1 ;
always @ (∗)

as se r t (last_plus_one == counter) ;

Quiz #36

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

360 / 462

The following design generates a warmup failure.

input wire [3 1 : 0] i_a , i_b , i_c ;

always @ (∗)
begin

assume (i_a+ i_b == 32 ’h4) ;
assume (i_b +i_c == 32 ’h8) ;
assume (i_a+{ i_b , 1 ’b0}+i_c == 32 ’h7) ;

end

Which assumption is at fault?

Answer #36

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

361 / 462

Which assumption is at fault?

input wire [3 1 : 0] i_a , i_b , i_c ;

always @ (∗)
begin

assume (i_a+ i_b == 32 ’h4) ;
assume (i_b +i_c == 32 ’h8) ;
assume (i_a+{ i_b , 1 ’b0}+i_c == 32 ’h7) ;

end

Removing any one of these assumptions will resolve the warmup
failure.

˝ This illustrates one of the fundamental problems of warmup
failures: Since any one of several assumptions might cause
the design to fail, there’s no way for the solver to tell which
assumption was truly at fault.

Quiz #37

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

362 / 462

What are the three most common bus interface properties?

1. Following a reset, the bus should return to an idle state and
any pending requests should be dropped

2. If the bus is stalled, the request must not change
3. . . .

There’s one other basic, yet common, bus interface property
that’s missing. What is it?

Answer #37

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

363 / 462

What are the three most common bus interface properties?

1. Following a reset, the bus should return to an idle state and
any pending requests should be dropped

2. If the bus is stalled, the request must not change
3. There should be one and only one response for every bus

request

I’ll ask about the “contract” property to insure that the bus
actually works next week

Quiz #38

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

364 / 462

None of the properties we examined last week truly expresses the
“contract” associated with bus transactions. How should that
contract be expressed for a generic bus component?

1. Let the solver pick an arbitrary address, and a value to be at
that address

2. . . .
3. Prove that reads from that address return the value from

within the slave found at that address

What’s the missing step?

Answer #38

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

365 / 462

How should the formal contract be expressed for a bus slave?

1. Let the solver pick an arbitrary address, and a value to be at
that address

2. Adjust the value at that address following any write request
3. Prove that reads from that address return the value from

within the slave found at that address

You should find these basic property steps common across many
bus components

1. Not-so-generic bus slaves may need to use a slightly different
approach, verifying instead that the result matches the value
within the bus slave

2. Sequence is important, especially with AXI: the return value
might be waiting for a RREADY longer than that return
value accurately expresses the register’s value within the core

Quiz #39

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

366 / 462

Can you spot the AXI bug below?

S AXI ACLK

S AXI ARESETN

S AXI AWVALID

S AXI AWREADY

S AXI AWADDR ’h....0

S AXI AWLEN 0

S AXI AWSIZE 3’h0

S AXI WVALID

S AXI WREADY

S AXI WDATA[31:0] ’h87654321

S AXI WSTRB[3:0] 4’h2

Answer #39

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

367 / 462

Take a closer look at AWADDR, AWSIZE, and WSTRB

S AXI ACLK

S AXI AWVALID

S AXI AWADDR ’h....0

S AXI AWSIZE 3’h0

S AXI WVALID

S AXI WSTRB[3:0] 4’h2

If AWADDR ends in 4’h0, for an 8-bit transfer (AWSIZE=0),
WSTRB can only be 4’h0 or 4’h1

Quiz #40

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

368 / 462

Consider the design below

reg A , B , C , D , E , Z ;
always @ (posedge clk)
begin

// As s i gn to A, B, C , D, E , and Z somehow
end

as se r t property (@ (posedge clk)
Z |=> (A && B && C && D && E)) ;

Would you consider this to be a good or a bad assertion?

Answer #40

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

369 / 462

While the assertion below is legal,

as se r t property (@ (posedge clk)
Z |=> (A && B && C && D && E)) ;

because the assertion tests for the and of many conditions, it can
be difficult to tell from a trace which condition caused the
assertion failure. You might find that splitting it up makes it
easier to work with.

as se r t property (@ (posedge clk) Z |=> A) ;
as se r t property (@ (posedge clk) Z |=> B) ;
as se r t property (@ (posedge clk) Z |=> C) ;
as se r t property (@ (posedge clk) Z |=> D) ;
as se r t property (@ (posedge clk) Z |=> E) ;

Quiz #41

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

370 / 462

Can you spot the AXI bug below?

S AXI ACLK

S AXI ARESETN

S AXI AWVALID

S AXI AWREADY

S AXI AWADDR ’h..1

S AXI AWLEN 0

S AXI AWSIZE 3’h1

S AXI WVALID

S AXI WREADY

S AXI WDATA[31:0] ’h87654321

S AXI WSTRB[3:0] 4’hf

Answer #41

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

371 / 462

Can you spot the AXI bug below?

S AXI AWVALID

S AXI AWADDR ’h..1

S AXI AWSIZE 3’h1

S AXI WVALID

S AXI WSTRB[3:0] 4’hf

1. If AWSIZE==1, then only two bits of WSTRB may ever be set
on any given beat. These can either be 4’h3 or 4’hc for a
32-bit bus

2. If AWADDR[1:0]==2’b01, then only bit WSTRB[1] may be set

Note that AXI explicitly allows WVALID before AWVALID

Quiz #42

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

372 / 462

Consider the design below

reg A , B , C , D , Z ;
always @ (posedge clk)
begin

// As s i gn to A, B, C , D, and Z somehow
end

as se r t property (@ (posedge clk)
Z |=> A

##1 B [∗ 0 : $]
##1 C

##1 B [∗ 0 : $]
##1 D) ;

Would you consider this to be a good or a bad assertion?

Answer #42

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

373 / 462

This assertion will never pass induction

as se r t property (@ (posedge clk)
Z |=> A ##1 B [∗ 0 : $] ##1 C

##1 B [∗ 0 : $] ##1 D) ;

Why?

˝ Because the induction engine doesn’t start at t “ 0

– There’s no way to tell if the design is in the first B state or
the second B state

˝ Worse, if B & C might ever hold, then the induction engine
doesn’t know how many times B was ever entered

– The design might start with B true, and then set B & C for
any number of clock ticks

– The same applies to D

Quiz #43

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

374 / 462

Is this a valid AXI read request?

S AXI ACLK

S AXI ARVALID

S AXI ARREADY

S AXI ARADDR 20’h01000

S AXI ARLEN 8’h4

S AXI ARBURST WRAP

S AXI ARSIZE 3’h1

You may assume the reset is inactive.

Answer #43

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

375 / 462

Is this a valid AXI read request?

S AXI ACLK

S AXI ARVALID

S AXI ARREADY

S AXI ARADDR 20’h01000

S AXI ARLEN 8’h4

S AXI ARBURST WRAP

No.

˝ When using wrapped addressing, the burst length must be
either 2, 4, 8 or 16.
AxLEN must be one less than that length

˝ In this case, ARLEN = 4, indicating a burst length of 5.

Answer #43 – Bonus

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

376 / 462

How would you detect this problem?

S AXI ARVALID

S AXI ARLEN 8’h4

S AXI ARBURST WRAP

The following property would capture this check

always @ (∗)
i f ((S_AXI_ARVALID)&&(S_AXI_ARBURST == WRAP))

as se r t ((S_AXI_ARLEN == 8 ’h1)
| | (S_AXI_ARLEN == 8 ’h3)
| | (S_AXI_ARLEN == 8 ’h7)
| | (S_AXI_ARLEN == 8 ’ h15)) ;

Be aware: Passing induction would take a bit more work

Quiz #44

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

377 / 462

Consider the following FIFO design that passed its testbench

always @ (posedge i_clk)
begin
i f (i_rd && ! o_empty)

rd_addr <= rd_addr + 1 ;
i f (i_wr && ! o_full)

wr_addr <= wr_addr + 1 ;
end

always @ (posedge i_clk)
i f (i_rd && ! i_wr)

fifo_fill <= fifo_fill ´ 1 ;
e l s e i f (i_wr && ! i_rd)

fifo_fill <= fifo_fill + 1 ;

Ignoring the missing reset and initial states, and assuming
o_empty and o_full are suitably defined, do you see any bugs?

Answer #44

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

378 / 462

Bugs in the FIFO? What about the following sequence?

i clk

i wr

o full

i rd

o empty

fifo fill 0 -1

Did you see any others? (There were more ...)

Answer #44 - Formal

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

379 / 462

What formal properties might have found these bugs?

reg [LGFIFO : 0] f_fifo_fill ;

always @ (∗)
f_fifo_fill = wr_addr ´ rd_addr ;

always @ (∗)
as se r t (f_fifo_fill == fifo_fill) ;

This one assertion would’ve caught these bugs. You could easily
pivot from here and catch any o_empty or o_full errors as well,

always @ (∗)
as se r t (o_empty== (f_fifo_fill == 0)) ;

always @ (∗)
as se r t (o_full ==

(f_fifo_fill== (1<<LGFIFO))) ;

But this goes beyond what was in the quiz question.

Quiz #45

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

380 / 462

What addresses and in what order is this request asking for?

S AXI ACLK

S AXI ARVALID

S AXI ARADDR ’h1006

S AXI ARLEN 8’h7

S AXI ARBURST WRAP

S AXI ARSIZE 3’h1

Assume a 32’bit bus width

Answer #45

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

381 / 462

What address and in what order is this request asking for?

S AXI ACLK

S AXI ARVALID

S AXI ARADDR ’h1006

S AXI ARLEN 8’h7

S AXI ARBURST WRAP

S AXI ARSIZE 3’h1

The addresses read and returned will be 1006h, 1008h, 100Ah,
100Ch, 100Eh, 1000h, 1002h, 1004h in that order

Quiz #46

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

382 / 462

You’ve just built a new peripheral. You’d like to formally verify it.
What properties would you start with?

Answer #46

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

383 / 462

This is a very open ended question, so there are many answers to
this question.
Here are some of my own:

1. Start with any bus interface formal property files
This will immediately include a set of assumptions and
assertions, which will then validate your bus interface

2. Consider assuming an initial reset
3. cover() the end of every type of bus request you expect to

respond to
Don’t forget to cover() the design returning back to idle!

4. Create sequences (SVA or poor man’s) describing the actions
associated with each operation you expect to perform, and
ending with the bus response
Don’t forget the return to idle!

Quiz #47

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

384 / 462

There are three basic methods to include formal properties into a
design

1. Placing the formal properties within the design itself

module modulename (/∗ . . . ∗/) ;
// Des ign l o g i c

‘ i f d e f FORMAL

// P r o p e r t i e s
‘ e nd i f // FORMAL
endmodule

This works nicely with the open version of SymbiYosys.
2. Binding the properties from one file into the logic of another

bind designmodule propertymodule instance (. ∗) ;

Can anyone think of a third method?

Answer #47

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

385 / 462

A third method of adding properties into a design is to wrap the
design with the properties like you would with a test bench.

˝ Without access to internal state values, passing induction can
be a challenge
Remember, induction is a form of white-box verification

˝ State registers within the design may still be referenced using
dot notation
Dot notation support is currently only available when using
commercial formal tools, such as the SymbioticEDA Suite

Quiz #48

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

386 / 462

You are trying to verify a CPU.

˝ How would you go about verifying that your instruction fetch
works?

˝ What formal properties would be appropriate to describe the
“contract” between the instruction fetch and the CPU?

Answer #48

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

387 / 462

1. Include a formal bus property file, to verify the bus
interaction

2. Pick an address in memory, pick a piece of data at that
address, decide if the address will return a bus error or not

(∗ anyconst ∗) reg [AW´1:0] f_fetch_addr ;
(∗ anyconst ∗) reg [DW´1:0] f_fetch_data ;
(∗ anyconst ∗) reg f_fetch_err ;

3. assume() on the bus interface . . .

˝ That any request for f_fetch_addr returns f_fetch_data
˝ That it also returns a bus error if and only if f_fetch_err

4. assert() within your CPU, that any time the instruction
address matches f_fetch_addr

˝ That the instruction matches f_fetch_data
˝ That an error condition exists if f_fetch_err is ever true

Quiz #49

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

388 / 462

The following design is used to read from either a control
register, or sequential elements from a block RAM.

always @ (posedge i_clk) begin
i f (i_wb_stb && i_wb_we

i_wb_addr == CONTROL)
addr <= 0 ;

e l s e i f (i_wb_stb && ! i_wb_we
&& i_wb_addr == DATA)

addr <= addr + 1 ;
memv <= mem [addr] ;
case (i_wb_addr)
CONTROL : o_wb_data <= control_reg ;
DATA : o_wb_data <= memv ;
endcase
o_wb_ack <= i_wb_stb ; // . . .

See the bug?

Answer #49

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

389 / 462

Did you notice the time it takes to read a value?

˝ Reads take two clocks: one to read the value from memory,
and a second to select the value read.

˝ By setting o_wb_ack immediately after o_wb_stb, the memory
value doesn’t make it into o_wb_data in time.

˝ Delaying o_wb_ack by one clock would fix this.

This bug was living in one of my cores for years.

˝ Reading all ones or all zeros values never caught it
˝ Neither did slower serial port commanded reads.
˝ I only caught this bug recently when reading from a DMA

returned elements 0, 0, 1, 2, 3, etc.

What formal properties would you recommend adding to this
design in order to catch these bugs?

https://github.com/ZipCPU/sdspi/blob/master/rtl/sdspi.v

Answer #49b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

390 / 462

Chances are the process of formal verification would catch this

˝ Just putting the property together is likely to force you to
think through what you want your logic to do

˝ . . . and catch the bug

Once thought out, the following property would double-check the
two clock read.

as se r t property (@ (posedge i_clk)
d i sab l e iff (i_reset | | ! i_wb_cyc)
(i_wb_stb && ! o_wb_stall

&& ! i_wb_we && i_wb_addr == DATA)
|=> (addr == $past (addr + 1))
##1 o_wb_ack

&& (o_wb_data == $past (mem [addr] , 2))) ;

Watch out for overflow in that addition!

Quiz #50

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

391 / 462

The following construct works well to make certain that initial
values and reset values match

reg f_past_valid = 0 ;
always @ (posedge i_clk)

f_past_valid <= 1 ;

always @ (posedge i_clk)
i f (! f_past_valid | | $past (i_reset))
begin

// Check f o r r e s e t p r o p e r t i e s
// For example . . .
as se r t (counter == 0) ;

end

How would you go about verifying the reset works on a design
with no initial values or for hardware that doesn’t support them?

Answer #50

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

392 / 462

The key to not having any initial value support lies in assuming
an initial reset

i n i t i a l assume (i_reset) ;

always @ (posedge i_clk)
i f (! i_reset && $past (i_reset))
begin

// Check r e s e t p r o p e r t i e s
// For example . . .
as se r t (counter == 0) ;

end

Bonus: How would you verify a design with an asynchronous
reset?

Quiz #51

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

393 / 462

Your design contains a FIFO. You want to assert a property of
its output. How do you go about it?

sfifo fifo (i_clk , i_reset , i_wr , i_wval ,
i_rd , i_rval) ;

always @ (∗)
as se r t (something_about_i_rval) ;

Answer #51

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

394 / 462

FIFO’s are typically verified by following one or two items
through the FIFO process. These special values can be used to
prove the assertion below.

sfifo fifo (i_clk , i_reset , i_wr , i_wval ,
i_rd , i_rval) ;

always @ (∗)
i f (rval_is_special_value)

as se r t (something_about_i_rval) ;
e l s e // i f (! r v a l i s s p e c i a l v a l u e)

assume (something_about_i_rval) ;
always @ (∗)
i f (special_value_in_fifo)
begin

// A s s e r t someth ing about the s p e c i a l
// v a l u e wh i l e i t i s i n the FIFO

Quiz #52

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

395 / 462

You are trying to formally verify a CPU. How would you go
about verifying that your load/store unit works?

Answer #52

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

396 / 462

1. Start by including the formal bus property file
2. As with the instruction fetch, let the solver pick a . . .

˝ Special address, f_lsu_addr,
˝ Special data value, f_lsu_data, and
˝ Whether the bus should return an error, f_lsu_err.

3. Track writes to f_lsu_addr using the data values

˝ Any time a store instruction is issued for f_lsu_addr,
adjust the value of f_lsu_data

˝ Any time a write is issued over the bus for f_lsu_addr,
assert() the value written is f_lsu_data

4. assume() reads from the address return f_lsu_data, and
return errors if and only if f_lsu_err

5. assert() within your CPU, that any time f_lsu_addr is read,
f_lsu_data is written to the register file

Quiz #53

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

397 / 462

Consider the VHDL design below controlling an AXI slave:

AXI_READ_RLAST_P : process (S_AXI_ACLK) i s
begin

i f (S_AXI_ACLK ’ event and S_AXI_ACLK= ’1 ’) then
i f (S_AXI_ARESETN = ’0 ’) then

S_AXI_RLAST <= ’0 ’ ;
e l s i f S_AXI_RREADY = ’1 ’ then

S_AXI_RLAST <= s_axi_rlast_i and rvalid ;
end i f ;

end i f ;
end process AXI_READ_RLAST_P ;

Can you spot any bugs in this snippet alone?

Answer #53

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

398 / 462

SymbiYosys found the following trace,

S AXI ACLK

S AXI ARESETN

S AXI ARVALID

S AXI ARREADY

S AXI ARLEN 0 3E AB

S AXI RVALID

S AXI RREADY

S AXI RLAST ?

This bug lived for years in a piece of commercial IP that was
regularly checked by a “best in class” property checker. A first
ever formal AXI property check turned it up immediately.

Answer #53b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

399 / 462

The correct check would include not only S_AXI_RREADY, but also
the possibility that !S_AXI_RVALID.

AXI_READ_RLAST_P : process (S_AXI_ACLK) i s
begin

i f (S_AXI_ACLK ’ event and S_AXI_ACLK= ’1 ’) then
i f (S_AXI_ARESETN = ’0 ’) then

S_AXI_RLAST <= ’0 ’ ;
e l s i f (S_AXI_RVALID = ’0 ’ ´́ e x t r a check !

or S_AXI_RREADY = ’1 ’) then
S_AXI_RLAST <= s_axi_rlast_i and rvalid ;

end i f ;
end i f ;

end process AXI_READ_RLAST_P ;

Quiz #54

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

400 / 462

You are trying to verify a CPU. How can you go about verifying
that a single ALU instruction works? Let’s consider an ADD

instruction for this example.

Answer #54

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

401 / 462

How shall you verify an ADD instruction within a CPU?

1. Generate a packet as the ADD instruction gets processed

˝ Capture the instruction word, current/next program
counter, register inputs, ALU output, etc.

2. cover() an ADD instruction getting retired
3. When the instruction is retired, use assertions to check . . .

˝ Is the output equal to the register inputs summed
together?

˝ Pick a register. If the input to the instruction is that
register, does it match the value of the last time the
register was written?

˝ Is the current program counter equal to the next program
counter from the previous instruction?

˝ Is the next program counter the next location in memory?

Quiz #55

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

402 / 462

You are working on a bus component, and you want to know
how much throughput you can achieve per clock using that
component
How might you use formal tools to solve this problem?

Answer #55

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

403 / 462

cover() makes a great way of measuring best case throughput.
The following formal logic will generate a trace demonstrating
the maximum AXI write throughput within a design

reg [3 : 0] cvr_writes ;
i n i t i a l cvr_writes = 0 ;
always @ (posedge i_clk)
i f (! S_AXI_ARESETN)

cvr_writes <= 0 ;
e l s e i f (S_AXI_BVALID && S_AXI_BREADY)

cvr_writes <= cvr_writes + 1 ;

always @ (∗)
cover (cvr_writes > 4) ;

This logic will generate the earliest possible trace showing a
response to five separate write requests (each w/ AWLEN=0)

Quiz #56

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

404 / 462

You are working on an AXI bus slave, and you want to know how
much throughput you can achieve per clock. Moreover, your core
is able to handle multiple burst sizes.
How might you determine how fast your core can handle burst
writes?

Answer #56

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

405 / 462

You can use cover() again! This time, create a flag, we’ll call it
cvr_wr_bursts, that will only be true if all write requests are of
length four or greater.

reg cvr_wr_bursts = 1 ;
always @ (posedge i_clk)
i f (! S_AXI_ARESETN)

cvr_wr_bursts <= 1 ;
e l s e i f (S_AXI_AWVALID && S_AXI_AWLEN < 3)

cvr_wr_bursts <= 0 ;

// c v r w r i t e s count s BVALID & BREADY as b e f o r e
always @ (∗)

cover (cvr_wr_bursts && cvr_writes > 2) ;

The above example will generate a trace showing a response to
three separate write bursts, each with AWLEN=3.

Quiz #57

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

406 / 462

Many of the AXI bugs I’ve found have centered around the
inability of a slave design to handle backpressure.

S AXI ACLK

S AXI ARESETN

S AXI ARVALID

S AXI ARREADY

S AXI RVALID

S AXI RREADY

Backpressure

What simulation or cover() goals might you use to guarantee
your design doesn’t suffer from an inability to handle
backpressure?

Answer #57

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

407 / 462

A useful simulation or cover() goal might be to hold
S_AXI_ARVALID high while holding S_AXI_RREADY low, creating a
maximum forward and backpressure. You could then examine
the trace to see if it looks right.

˝ This still requires examining the trace to know if the core
handled the backpressure correctly

˝ A formal property checker, given a bus property file, would
automatically check this setup by nature

˝ Such a checker would also examine the signals for you, to
find exactly where a request wasn’t properly given a response.

Of course, this is only one of the many possible simulation goals

˝ With simulation, you’ll never know if you’ve done enough

Quiz #58

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

408 / 462

You’ve built a complex state machine, and now want to verify
that without a start signal the state machine will remain idle.
Worse, you want to verify several other consequences of
remaining idle as well.
How might you go about building such a proof using Yosys?

Answer #58

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

409 / 462

Here’s an approach that I’ve used on several projects

˝ First, let the solver pick whether to do this check or not

(∗ anyconst ∗) reg f_idle_check ;

˝ Then, if set, assume no start signal

always @ (∗)
i f (f_idle_check)
begin

assume (! i_start_signal) ;

˝ Finally, assert your special case conditions

as se r t (state == IDLE) ;
as se r t (consequence_one) ;
// . . . e t c .

end

Quiz #59

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

410 / 462

You are trying to verify a hardware DMA

˝ A DMA is essentially a hardware memory copy

1. It receives a source address, destination address, and
copy length from the bus

2. Then copies (length) bytes of memory from source to
destination address

˝ Ignoring the obvious undefined behavior associated with
overlap between source and destination . . .

What formal properties would be appropriate to describe the
“contract” that such a DMA is required to fulfill?

Answer #59

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

411 / 462

What formal properties would be appropriate to describe the
“contract” that a DMA is required to fulfill?

˝ The first step is easy: connect your bus properties to both
control port and the data port.

That might just find most of your bugs, but for completeness
you’ll want to do one more:

˝ Pick a value in memory, at some offset within the source
region

˝ assume this value is returned by a read of that address
˝ assert this value is written by a write to the same offset, but

within the destination region
˝ If the solver can pick the value and offset arbitrarily, and the

resulting proof passes, then the entire DMA will therefore
work.

Quiz #60

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

412 / 462

You are trying to verify a CPU. How can you go about verifying
that a multiplication instruction works?

always @ (posedge i_clk)
mpy_out <= i_a ∗ i_b ;

always @ (posedge i_clk)
case (insn_type)
ALU_INSN : result <= alu_out ;
MPY_INSN : result <= mpy_out ;
DIV_INSN : result <= alu_out ;
LOD_INSN : result <= lsu_out ; // Load/ Sto r e I n s n
endcase

always @ (∗) // What a s s e r t i o n (s) might you use ?
i f (insn_type == MPY_INSN)

as se r t (mpy_out == ?) ;

Answer #60

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

413 / 462

This issue is complicated by the fact that formally verifying the
result of a multiplication tends to be beyond the capability of the
state of the art of formal verification. Given that, here are some
things you can do:

˝ Replace the output of the multiply with a (constrained)
arbitrary value

– Possible constraints include assuming the correct value in
the case of multiplication by zero, one, or negative one

– Alternatively, you might XOR’ing the inputs together with
another value

Although these solutions don’t check the result of the
instruction, they can still catch bugs associated with the pipeline
timing, forwarding, etc.

˝ The actual multiply result can then be checked via simulation

Quiz #61

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

414 / 462

Just as formal tools struggle with multiplies, they also struggle
with divides. Worse, many divide instructions take many clocks
to complete

˝ How can you go about verifying a divide using either BMC or
cover, but without processing all 32 (or more) steps of the
divide?

Answer #61

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

415 / 462

Verifying that the divide pipeline works is still valuable

˝ Consider using the approaches we used for a multiply to
verify that the divide is properly handled by its context

˝ You can capture the duration of the divide using a
(∗ anyseq ∗) “free variable.” Let this value range from only a
couple of clocks in duration all the way to the correct length
of the divide. This will keep things within the range of both
BMC and cover()

Verifying that the pipeline works for all durations of the divide
effectively verifies that it works for the correct duration

˝ You can use simulation to actually verify the result of the
divide

˝ Alternatively, you can use formal to verify the individual
internal steps of the divide

Quiz #62

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

416 / 462

You have a counter that is supposed to count down from some
programmable value to zero. How can you assert that this
counter will never be higher than the programmable value, given
that the value might change mid count?

always @ (posedge i_clk)
begin

i f (set_value) max_value <= new_value ;

i f (counter == 0)
counter <= max_value ;

e l s e
counter <= counter ´ 1 ;

// Thi s f a i l s i f the max va lue e v e r
// changes mid countdown !
as se r t (counter <= max_value) ;

end

Answer #62

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

417 / 462

Q: How can you assert that a counter will never be higher than
the programmable value, given that the value might change mid
count?
Answer: Capture a copy of the maximum value at the time the
counter is set

always @ (posedge i_clk)
i f (counter == 0)

f_max_value <= max_value ;

always @ (∗)
as se r t (counter <= f_max_value) ;

Remember: you can use Verilog to your advantage!

Quiz #63

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

418 / 462

You have a CPU component of a larger design.

cpu mycpu (i_clk , i_reset ,
bus_master_outputs , // . . .
bus_master_inputs , // . . .
interrupt_line) ; // or l i n e s

Your CPU passes formal verification.
How would you go about formally verifying the rest of the
design?

Answer #63

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

419 / 462

How would you go about formally verifying the rest of the
design?
Replace the CPU with a set of bus interface properties!

˝ Assume the CPU is a generic bus master
˝ This will disconnect any bus transactions from the CPU

operation that would cause them
On the other hand, you just proved the CPU would properly
execute its instructions

˝ You will want to do the same thing with your bus slaves as
well as the interconnect

This will then allow you to verify the top level of your design

Answer #63b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

420 / 462

How would you go about formally verifying the rest of the
design?
Replace the bus components with bus interface properties!

Quiz #64

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

421 / 462

Consider the VHDL design below controlling an AXI slave:

AXI_READ_VALID_P : process (S_AXI_ACLK) i s
begin

i f (S_AXI_ACLK ’ event and S_AXI_ACLK= ’1 ’) then
i f (S_AXI_ARESETN = ’0 ’) then

S_AXI_RVALID <= ’0 ’ ;
e l s i f S_AXI_RREADY = ’1 ’ then

S_AXI_RVALID <= rvalid ;
end i f ;

end i f ;
end process AXI_READ_VALID_P ;

Can you spot any bugs in this snippet alone?

Answer #64

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

422 / 462

Can you spot any bugs in this snippet alone?

AXI_READ_VALID_P : process (S_AXI_ACLK) i s
begin

i f (S_AXI_ACLK ’ event and S_AXI_ACLK= ’1 ’) then
i f (S_AXI_ARESETN = ’0 ’) then

S_AXI_RVALID <= ’0 ’ ;
e l s i f S_AXI_RREADY = ’1 ’ then

S_AXI_RVALID <= rvalid ;
end i f ;

end i f ;
end process AXI_READ_VALID_P ;

Absolutely!
What happens if (!S_AXI_RVALID && !S_AXI_RREADY)?
If the master hasn’t set S_AXI_RREADY in anticipation of a
response, something it isn’t required to do, the design will hang.

Quiz #65

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

423 / 462

SymbiYosys extends Verilog, SV, and VHDL with several
attributes, including

˝ (∗ anyconst ∗), (∗ anyseq ∗), and (∗ gclk ∗)

Let’s discuss (∗ anyconst ∗): How might you achieve the same
result as

(∗ anyconst ∗) wire A ;

while only using one of the other two attributes?

Answer #65

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

424 / 462

SymbiYosys extends Verilog, SV, and VHDL with several
attributes, including

˝ (∗ anyconst ∗), (∗ anyseq ∗), and (∗ gclk ∗)

Let’s discuss (∗ anyconst ∗): How might you achieve the same
result as

(∗ anyconst ∗) wire A ;

while only using one of the other two attributes?
The following declaration and property would be equivalent

(∗ anyseq ∗) wire A ;
always @ (posedge i_clk)

assume ($stab le (A)) ;

Bonus: How would you adjust this to handle multiple clocks?

Quiz #66

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

425 / 462

The following logic comes from a major vendor’s AXI stream
master implementation. Can you spot the bug?

always @ (posedge ACLK)
i f (! ARESETN)

// . . .
e l s e begin

TVALID <= (state == SEND_STREAM) && rptr < MAX ;
TLAST <= (rptr == MAX ´ 1) ;

i f (rptr < MAX) begin
i f (TVALID && TREADY) begin

done <= 0 ; rptr <= rptr + 1 ;
end end e l s e begin

done <= 1 ; rptr <= 0 ;
end end

Hint: the bug is not in the reset logic, nor is it in rptr or state

Answer #66

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

426 / 462

What happens when
TVALID && !TREADY && !TLAST && rptr == MAX´1?

˝ TLAST will change when things should’ve been stalled

ACLK

TVALID

TREADY

TLAST

rptr M-2 M-1 M 0

done

Answer #66b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

427 / 462

What happens when
TVALID && !TREADY && !TLAST && rptr == MAX?

˝ TVALID will change when things should’ve been stalled

ACLK

TVALID

TREADY

TLAST

rptr M-1 M 0

done

Answer #66c

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

428 / 462

Adding a check for !TVALID || TREADY fixes both of these bugs

// . . .
e l s e i f (! TVALID | | TREADY) begin

TVALID <= (state == SEND_STREAM) && rptr < MAX ;
TLAST <= (rptr == MAX ´ 1) ;

i f (rptr < MAX) begin
i f (TVALID && TREADY) begin

done <= 0 ; rptr <= rptr + 1 ;
end end e l s e begin

done <= 1 ; rptr <= 0 ;
end end

Quiz #67

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

429 / 462

Can you spot the AXI-lite bug below?

always @ (posedge S_AXI_ACLK)
i f (S_AXI_ARESETN == 1 ’b0)

axi_arready <= 1 ’b0 ;
e l s e i f (! axi_arready && S_AXI_ARVALID)

axi_arready <= 1 ’b1 ;
e l s e

axi_arready <= 1 ’b0 ;

Answer #67

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

430 / 462

AWREADY, WREADY and ARREADY all need to be responsive to
backpressure from the master. In this case, if RREADY is low long
enough then subsequent responses to consecutive requests will
get dropped.

ACLK

ARESETN

ARVALID

ARREADY

RVALID

RREADY

?

Your design will then hang.
Example courtesy of Vivado, from 2016.3 to the present (2020.1)

Quiz #68

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

431 / 462

Here’s a second AXI4-lite bug, also courtesy of Vivado 2020.1.
Can you spot it?

always @ (posedge S_AXI_ACLK)
i f (S_AXI_ARESETN == 1 ’b0)

axi_rvalid <= 0 ;
e l s e i f (axi_arready && S_AXI_ARVALID

&& ˜axi_rvalid)
axi_rvalid <= 1 ’b1 ;

e l s e i f (axi_rvalid && S_AXI_RREADY)
axi_rvalid <= 1 ’b0 ;

Yes, let me assure you, there is a bug in this code.

Answer #68

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

432 / 462

Never transition on VALID && READY and anything thing else.

˝ What happens if axi_arready && S_AXI_ARVALID

&& axi_rvalid? axi_rvalid is dropped.

ACLK

ARESETN

ARVALID

ARREADY

RVALID

RREADY

?

If your design isn’t ready to accept a transaction for some reason
or other, then it’s your responsibility to hold READY low.

Answer #68b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

433 / 462

Several individuals have suggested that this answer depends
upon how axi_arready is assigned.

˝ Had it been combinatorially assigned, there would be no error.

ass ign axi_arready = ! axi_rvalid ;

This is true.
˝ Had it been assigned that way, the logic could’ve also been

simplified to the correct answer

always @ (posedge S_AXI_ACLK)
i f (S_AXI_ARESETN == 1 ’b0)

axi_rvalid <= 0 ;
e l s e i f (axi_arready && S_AXI_ARVALID)

axi_rvalid <= 1 ’b1 ;
e l s e i f (axi_rvalid && S_AXI_RREADY)

axi_rvalid <= 1 ’b0 ;

Quiz #69

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

434 / 462

SymbiYosys extends Verilog, SV, and VHDL with several
attributes, including

˝ (∗ anyconst ∗), (∗ anyseq ∗), and (∗ gclk ∗)

To formally verify an asynchronous design, you need access to
the formal time-step. How might you use (∗ gclk ∗) for this
purpose? What other changes would be required in your design?

Answer #69

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

435 / 462

The formal timestep can be described using (∗ gclk ∗) by first
declaring a global time-step,

(∗ gclk ∗) wire gbl_clk ;

and then using it in your design:

always @ (posedge gbl_clk)

Don’t forget to add the SymbiYosys multiclock option:

[opt ions]
. . .
mult ic lock on

Quiz #70

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

436 / 462

Looking at the following vendor supplied AXI master design, do
you see any AXI protocol errors?

parameter AXI_BASE_ADDR = 32 ’ h4000_0000 ;
parameter BURST_LEN = 8 ;
ass ign burst_size_bytes

= BURST_LEN ∗ (AXI_DATA_WIDTH /8) ;

always @ (posedge ACLK)
i f (! M_AXI_ARESETN | | init_pulse)

axi_awaddr <= 0 ;
e l s e i f (M_AXI_AWREADY && axi_awvalid)

axi_awaddr <= axi_awaddr + burst_size_bytes ;

ass ign M_AXI_AWADDR = BASE_ADDR + axi_awaddr ;
ass ign M_AXI_AWLEN = BURST_LEN´1;

You may assume init_pulse |´> !M_AXI_AWVALID.

Answer #70

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

437 / 462

This bug is rather subtle, if present at all. (We can argue that.)

˝ As currently parameterized, there are no bugs.
˝ What happens if the parameters are overridden?
˝ Specifically, what if BASE_ADDR[11:0] > 12’hfe0 for a 32-bit

bus?
˝ The AXI Spec prohibits bursts from crossing a 4kB boundary
˝ Nothing in the demo indicates that the address can not be

arbitrarily overridden

What do you think? Is this a bona fide “bug”?

˝ It’s led to many broken user designs based upon this
demonstration code

Quiz #71

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

438 / 462

Can you spot any bugs in the AXI4–lite code below?

i n i t i a l BVALID = 0 ;
always @ (posedge ACLK)
i f (! ARESETN)

BVALID <= 0 ;
e l s e i f (AWVALID && AWREADY

&& WVALID && WREADY

&& ! BVALID)
BVALID <= 1 ;

e l s e i f (BREADY && BVALID)
BVALID <= 0 ;

˝ Hint: Xilinx’s VIP won’t necessarily find these bugs

If you’re not sure if there is a bug, how would you find out?

Answer #71

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

439 / 462

What happens if . . .

1. Either of AWVALID or WVALID but not both,
2. (AWVALID && WVALID) && AWREADY != WREADY, or even
3. (AWVALID && WVALID) && AWREADY && BVALID?

A couple assertions can quickly determine if any of these
conditions would ever be a problem:

˝ assert(AWREADY == WREADY);

˝ if (AWREADY) assert(AWVALID && WVALID);

˝ if (BVALID) assert(!AWREADY);

Of course, if these assertions would pass, then the logic could’ve
been greatly simplified

Answer #71b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

440 / 462

To fix this logic, I like using skid buffers and a combinatorial flag

always @ (∗)
write_ready = awskd_valid && wskd_valid

&& (! BVALID | | BREADY) ;

always @ (posedge ACLK)
i f (! ARESETN)

BVALID <= 0 ;
e l s e i f (write_ready)

BVALID <= 1 ;
e l s e i f (BREADY)

BVALID <= 0 ;

Using the skidbuffer gets around the requirement that all AXI
outputs be registered, since the skid buffer ready input doesn’t
need to be registered.

Answer #71c

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

441 / 462

You could also fix this logic without the skid buffers but only at
a loss of 50% throughput

always @ (posedge i_clk)
i f (! ARESETN)

write_ready <= 0 ;
e l s e begin

write_ready <= (AWVALID && AWREADY) ;
i f (write_ready)

write_ready <= 0 ;
// Note you ∗must∗ check f o r
// b a c kp r e s s u r e when u s i n g AXI
i f (BVALID && ! BREADY)

write_ready <= 0 ;
end

ass ign AWREADY = write_ready ;
ass ign WREADY = write_ready ;

Quiz #72

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

442 / 462

(∗ anyconst ∗) and (∗ anyseq ∗) can both be used to create
random values carefully chosen by the solver within your proof.
If these values need to be constrained, what kind of constraints
should be used on them?

Answer #72

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

443 / 462

(∗ anyconst ∗) and (∗ anyseq ∗) can both be used to create
random values carefully chosen by the solver within your proof.
If these values need additional constraints, what kind of
constraints should be used on them?

˝ Because (∗ anyconst ∗) and (∗ anyseq ∗) values act like
inputs, assumptions are appropriate for constraining them

˝ Beware, these two attributes will be ignored by a simulator

– In simulation, assume() constraints will become assert()s
– This will likely cause any simulation depending upon their

assumed values to fail
– You might wish to ifdef out any free variable sections

when running simulations, or
– Arrange them so they’ll work without additional

constraints under simulation

Quiz #73

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

444 / 462

Let’s talk about the depth of a proof

˝ For bounded and cover checks

– The depth is the number of steps that get checked

˝ For induction passes

– The depth is the number of steps where assertions are
assumed to be valid

˝ Be aware, the time required for the proof typically increases
exponentially with the depth

When building a full proof (i.e. with induction), what depth
should you start with?

Answer #73

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

445 / 462

I recommend the following rules for setting the depth

˝ Start with the length of the longest operation the design
must accomplish before returning to idle – if possible

– Otherwise shorten to what you have the patience for

˝ Start with the bounded check. Once it passes, add induction
˝ Once induction succeeds,

– Reduce the depth to the number of steps the induction
check took to succeed

Remember, a trace generated from a bounded check is easier to
debug

Quiz #74

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

446 / 462

Can you see anything wrong with the following assertion?

as se r t property (@ (posedge i_clk)
A ##1 B ##1 C

) ;

Answer #74

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

447 / 462

Can you see anything wrong with the following assertion?

as se r t property (@ (posedge i_clk)
A ##1 B ##1 C

) ;

Yes. Assertions need triggers. Without an trigger, this assertion
requires that A be true on every cycle, and that B and C follow.
Chances are what you mean to assert was something closer to,

as se r t property (@ (posedge i_clk)
A |=> B ##1 C

) ;

This says that if A is ever true, then B and then C must follow,
not that A must be true on every cycle.

Quiz #75

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

448 / 462

Will the following assertion pass a formal verification check?

input wire A ;

i n i t i a l assume (A) ;
assume property (@ (posedge CLK) A) ;

always @ (∗)
as se r t (A) ;

Answer #75

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

449 / 462

No, it will not. You’ll get something similar to the following
trace:

CLK

A

It’s as though the assumption never took effect!
What went wrong? Clocked properties require a clock edge
before taking effect.

Answer #75b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

450 / 462

The assertion is equivalent to the following:

reg p_assumption = 1 , f_initial = 1 ;

always @ (posedge CLK) begin
f_initial <= 0 ;
// R e g i s t e r the c l o c k ed assumpt ion
p_assumption <= A ;

end

always @ (∗) begin
i f (f_initial) assume (A) ;
assume (p_assumption) ;
as se r t (A) ;

end

As you can see, p_assumption only gets checked after the clock
edge

Quiz #76

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

451 / 462

How do you know if your design has enough assertions?

Answer #76

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

452 / 462

How do you know if your design has enough assertions?
Here are some tests you can use:

˝ Is every assumption made by a module depending on your
design covered by an assertion?
I like using shared interface property files for this, to make
certain that assumptions don’t get lost.

˝ Is every output pinned down? Could you tell, for example via
an assertion failure, if an output had the wrong value?

˝ Does the design pass induction?

You can also use mcy (mutation coverage with yosys) to find
things that aren’t covered by any assertions.

Quiz #77

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

453 / 462

The following example was inspired by some endianness
adjustment logic.
Will the following assertion pass?

input wire [3 1 : 0] in ;
input wire [2 : 0] shift ;
output reg [3 1 : 0] out ;

always @ (∗)
out = in >> 4∗(˜ shift) ;

as se r t property (@ (posedge clk)
in == 32 ’ hfeedbead && shift == 3 ’h7
|´> out == 32 ’ hfeedbead) ;

Answer #77

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

454 / 462

No, it will not pass.

˝ When evaluating logic with multiple widths, the synthesis
tool is supposed to first expand every term to the maximum
width used

˝ shift[2:0] thus gets expanded to 32’h7

˝ ˜shift[2:0] becomes 32’hffff_fff8

˝ 32’d4 ∗ 32’hffff_fff8 is then 32’hffff_ff80, and
˝ 32’dfeedbead >> 32’hffff_ff80 is zero, not 32’hfeedbead

Note: I didn’t get this right the first time either.

Quiz #78

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

455 / 462

The following student cover() statement was intended to
generate a trace showing a FIFO go from empty to full and back
again.

cover property (@ (posedge i_clk)
o_empty ##1 1 [∗ 0 : $]

##1 o_full ##1 1 [∗ 0 : $]
##1 o_empty) ;

Much to the student’s surprise, the resulting trace wasn’t at all
what he was expecting.
Judging from the cover() statement above, what do you think
went wrong?

Answer #78

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

456 / 462

The student forgot to keep the reset low (inactive)

˝ The solver jumped from full to empty on a reset
˝ This short-circuited his desired cover proof

i clk

i reset

i wr

o full

i rd

o empty

o fill 0 1 2 3 4 5 6 7 0

Answer #78b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

457 / 462

Disabling the cover() statement on a reset solves this problem

cover property (@ (posedge i_clk)
d i sab l e iff (i_reset)

o_empty ##1 1 [∗ 0 : $]
##1 o_full ##1 1 [∗ 0 : $]
##1 o_empty) ;

Since the student also wanted to see some non-zero data passing
through the FIFO, we made the disable iff statement a touch
more complex.

cover property (@ (posedge i_clk)
d i sab l e iff (i_reset | | i_data != wr_addr)

o_empty ##1 1 [∗ 0 : $]
##1 o_full ##1 1 [∗ 0 : $]
##1 o_empty) ;

Quiz #79

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

458 / 462

Your UART appears to be running at the wrong baud rate in
hardware. Tracing this problem down further, it appears as
though your clock may be running at the wrong frequency.
What’s an easy way to verify the frequency your clock is running
at?

Answer #79

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

459 / 462

Here’s my personal favorite approach to verifying a clock’s rate:

reg [3 1 : 0] counter ;

always @ (posedge i_clk)
// 43 == 2ˆ32 / 100 MHz
counter <= counter + 32 ’ d43 ;

always @ (∗)
o_led = counter [3 1] ;

A 100MHz system clock will now cause this LED to blink at 1Hz.

Answer #79b

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

460 / 462

For those in an engineering lab, there’s also the obvious

˝ Forward the clock to a pin, and examine it with an external
oscilloscope

Other approaches to this problem deserve an honorable mention,
if for no other reason than for their creativity:

˝ Output a square wave to a piezo speaker and comare it to a
tuning fork

˝ Causing a pin to transmit on the AM band (1MHz or so),
look for it’s signal using a nearby radio receiver

˝ Use a known frequency to count edges from the unknown
clock

˝ Transmit a perpetual 0x55 over UART, and looking for the
resulting square wave with an oscilloscope

Quiz #80

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

461 / 462

Consider the following trace initiating an AXI write burst.

S AXI ACLK

S AXI ARESETN

S AXI AWVALID

S AXI AWADDR ’b..01

S AXI AWLEN 1

S AXI AWSIZE 3’h1

S AXI WVALID

S AXI WSTRB[3:0] 4’b0110

S AXI WLAST

Assume that the C_AXI_DATA_WIDTH == 32, and
C_AXI_ADDR_WIDTH > 2. Is the first beat of this burst legal?

Answer #80

Welcome

Motivation

Basics

Clocked and $past

k Induction

Bus Properties

Free Variables

Abstraction

Invariants

Multiple-Clocks

Cover

Sequences

Quizzes

462 / 462

No. The WSTRB value in the write beat is not legal.
The burst exists to help illustrate this.

˝ It’s two beats long
˝ Each beat is 16-bits, or two bytes
˝ The second address is aligned on a 16-bit boundary

08162431

3 2 1 0

3 2 1 0

˝ This means that WSTRB[2] belongs to the second beat, not the
first.

While the problem would exist without the burst, the burst
details help to illuminate the problem.

	
	Welcome
	Motivation
	Introduction

	Formal Verification Basics: assert and assume
	General Rule
	Carelessness
	Bounded Model Checking
	Ex: Counter

	Clocked and $past
	Basics
	$past Rule
	Past Assertions
	Examples
	Ex: Busy Counter

	k Induction
	Lesson Overview
	BMC vs Induction
	General Rule
	Checkers
	The Trap
	Results
	Examples

	Bus Properties
	Ex: WB Bus

	Free Variables
	Lesson Overview
	any*
	Memory
	So what?
	Rule of Free Variables
	Discussion

	Abstraction
	Lesson Overview
	Abstraction Formally
	Formal Proof
	In Pictures
	Examples
	Exercise

	Invariants
	Lesson Removed

	Multiple-Clocks
	Basics
	SymbiYosys config change
	(* gclk *)
	$rose
	$stable
	Examples
	Exercises

	Cover
	Lesson Overview
	BMC vs Cover
	Cover in Verilog
	State Space
	SymbiYosys
	Counter

	Sequences
	Lesson Overview
	Clocking
	Bind
	Sequences
	Questions?

	Quizzes

